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life and/or property. Extensive wind-tunnel testing and radio-controlled
flight testing has been done over the last twenty years to gain a better
understanding of the dynamic instabilities at high angles-of-attack. A
basic problem has existed in interpreting these data and in making predic-
tions of aircraft dynamic behavior so as to achieve close agreement with
flight test data.

I Aircraft dynamic behavior at high angles-of-attack is highly nonlinear
and in the past there has been a lack of suitable techniques for analyzing
the global behavior of nonlinear systems. Under a previous project with
the Office of Naval Research, Scientific Systems, Inc. has developed a new
approach based on Bifurcation Analysis and Catastrophe Theory Methodology
(BACTM). The approach has been applied to specific jump and limit cycle
behavior such as roll-coupling, pitch up, post-stall departure, divergence,
spin entry, developed erect spin, and spin prevention and recovery. The
aircraft used for the study of spin motions was selected because of the
completeness of the aero data in the spin flight regimes, and because it
is representative of modern fighters. This model was also used for studies
of non-spin, high angle-of-attack behavior.

Under this project, the.full six DOF aircraft model was implemented,
and used not only for the above studies, but also for several new de-
velopments in the BACTM methodology. The new developments are basically
in the area of generalizing and improving the numerical techniques for
computing equilibrium and bifurcation surfaces, in expanding the com-
prehensiveness of the physical model and environment and in the study of
chaotic motions. -

The work on this project has centered around the application of
BACTM to study the spin characteristics of a "variable sweep" fighter
aircraft. The aerodynamic data for this model roughly corresponds to
experimental data for the F-ll, although modifications in some of the
numbers, particularly Cn, are required to make simulation results agree

with flight test data. We have designated this simulation model as
Aircraft F.

Spin behavior is typically a post-stall phenomenon, and is character-
ized by angles-of-attack much in excess of the stall value of angle-of-
attack. It is also possible that spin conditions will follow a noll
departure motion. A certain type of spin, the erect flat spin, has
been given particular emphasis in this work effort. This spin is featured
by values of a (angle-of-attack) in the 75-85 degree ranges; a vertical
body rotation rate, which is also constant over time, and center of mass
motion which is basically helical, with the axis parallel to local
vertical; and a noticeably prominent yaw rate.
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I CHAPTER I

I Introduction and Summary

1 1.1 Scope of Work Effort

High angle-of-attack phenomena have been of interest to aerodynamicists,

aircraft designers, pilots and control system analysts ever since the advent

of modern high performance aircraft. Due to the concentration of inertia

along the fuselage, the modern jet fighters are highly susceptible to

I post-stall departures and spin. In spite of extensive design effort, modern

aircraft still inadvertently enter spins which sometimes result in loss

of life and/or property. Extensive wind-tunnel testing and radio-controlled

flight testing has been done over the last twenty years to gain better

understanding of the dynamic instabilities at high angles-of-attack. A

basic problem has existed in interpreting these data and in making predic-

tions of aircraft dynamic behavior so as to achieve close agreement with

flight test data.

Aircraft dynamic behavior at high angles-of-attack is highly nonlinear

and in the past there has been a lack of suitable techniques for analyzing

the global behavior of nonlinear systems. Under a previous project with

the Office of Naval Research, Scientific Systems, Inc. has developed a new

approach based on Bifurcation Analysis and Catastrophe Theory Methodology

(BACTM). The approach has been applied to specific jump and limit cycle

behavior such as roll-coupling, pitch up, post-stall departure, divergence,

I spin entry, developed erect spin, and spin prevention and recovery. The

aircraft used for the study of spin motions was selected because of the
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completeness of the aero data in the spin flight regimes, and because it

is representative of modern fighters. This model was also used fir studies

of non-spin, high angle-of-attack behavior.

Under this project, the full six DOF aircraft model was implemented,

and used not only for the above studies, but also for several new de-

velopments in the BACTM methodology. The new developments are basically

in the area of generalizing and improving the numerical techniques for

computing equilibrium and biftrcation surfaces, in expanding the com-

prehensiveness of the physical model and environment and in the study of

chaotic motions.

The work on this project has centered around the application of

BACTM to study the spin characteristics of a "variable sweep" fighter

aircraft. The aerodynamic data for this model roughly corresponds to

experimental data for the F-Ill, although modifications in some of the

numbers, particularly Cn, are required to make simulation results agree

with flight test data. We have designated this simulation model as

Aircraft F.

Spin behavior is typically a post-stall phenomenon, and is character-

ized by angles-of-attack much in excess of the stall value of angle-of-

attack. It is also possible that spin conditions will follow a roll

departure motion. A certain type of spin, the erect flat spin, has

been given particular emphasis in this work effort. This spin is featured

by values of a (angle-of-attack) in the 75-85 degree ranges; a vertical

body rotation rate, which is also constant over time, and center of mass

motion which is basically helical, with the axis parallel to local

vertical; and a noticeably prominent yaw rate.
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The study of spin behavior begins with an analysis of the types and

nature of equilibrium spin conditions. Because gravity plays a role,

the basic system of equations is eighth order (the six force-moment equa-

tions, plus two kinematical equations for pitch and roll angles). Gravity

is not a significant factor in the so-called "roll-coupling" flight regime,

studied previously (Mehra et al. (1977)). In the case of spin equilibrium

conditions, the presence of a non-zero gravity term causes the roll and

pitch angles to enter the basic sixth-order system.

The highly nonlinear nature of flat spin, and the extreme values of

state variables which typify it, require that the aerodynamic data extend

over values of a and sideslip (a) which are well beyond the ranges of

readily accessible data. The data we have used here for aircraft F were

available in tabular form, and do encompass the necessary ranges (Moore

et al. (1971)). Spline function polynomials were used to model this aero

data because these functions are continuous at all interior points in-

cluding certain derivatives.* Spline functions can therefore give accurate

results over all points in the region with the accuracy needed to insure

efficient numerical solution of the equilibrium and bifurcation surfaces.

There is also flexibility, in that numerical techniques which utilize

analytical expressions for the derivatives of the aero coefficients, can

effectively utilize the spline approximation. Our results have confirmed

the soundness of this choice.

A final note on the simulation model. The controls chosen were the

standard aerosurface controls, aileron, elevator and rudder deflections.

Thrust is not used as a control explicitly. This is not an undue restriction,

*This is true up to second order derivatives when cubic or bi-cubic splines

are used.

i

'1!
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since thrust is generally maximum during high-a maneuvering or is reduced

to idle during spin.

Equilibrium surfaces for spin conditions were computed with satis-

factory accuracy and efficiency by means of a parametric continuation pro-

cedure based on the methods of Davidenko (1953) and Lahaye (1934). In

its basic form, this procedure solves a system of nonlinear algebraic

equations by varying a parameter from a value for which the unknowns are

readily determined to the actual value of the basic system. In our appli-

cation, the parameter is one of the aerosurface controls and the unknowns

are the eight state variables. The starting point is determined by a

Newton-Raphson scheme, with initial guesses for the state and control at

values which correspond to expected spin situations. In aircraft F, for

example, the equilibrium pitch and roll rates are about 20 deg/sec, and

yaw rate is roughly 10 times as large. Velocity is about 450 feet per

sec, angle-of-attack about 83 deg. Sideslip, pitch and roll equilibrium

angles are 5 deg or less. It has been verified that the equilibrium angular

velocity is vertical. The continuation parameter, say rudder deflection,

is then extended over its range from this starting point.

The particular continuation technique employed here is principally an

amalgamation of methods proposed by Klopfenstein (1961), Keller (1977),

and Kubicek (1976). These methods arose out of the necessity of dealing with

various singularities which typify nonlinear equilibrium surfaces. The most

important of these singularities are limit points and bifurcation points.

Kubicek, Keller and Klopfenstein have added an arclength parameter, making

it the independent variable, to eliminate the limit point singularity. Kubi-

cek and Klopfenstein use a purely Euclidean arclength parameter, while Keller
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I introduces a family of "pseudo" arclength parameters which help to allow one to

solve for the slopes of all of the solution curves which pass through a bifur-

cation point. In this way, the bifurcation points may be isolated.

Continuation proceeds on the original branch using the knowledge of its

slope and "jumping" over the actual bifurcation point. Then, one returns

I to the bifurcation point and begins continuation along the secondary branches.

In addition, Keller's scheme may be extended to function spaces, so that

differential systems such as Two-Point Boundary Value Problems may also be

solved. The methods of Kubicek and Keller enable the computation of the

complete equilibrium or bifurcation surface with just one computer run,I

and are typically more "robust" than Klopfenstein's method.

The eigenvalue analysis of the equilibrium surfaces for aircraft F

show regions of jump, limit cycle, hysteresis and other phenomena similar

to those found for aircrafts A, B and H investigated earlier (Mehra et al.

(1977)). In the case of the spin phenomena, the magnitudes of the jumps

are typically smaller, though there is indication that these jumps would

go from flat spin to an intermediate spin (ax-70 ° ) to steep spin (a 45°).

Additionally, jumps to limit cycles or oscillatory spins are also present.

The aircraft F model has also been used to generate equilibrium sur-

faces in non-spin regions prior to departure. A major consideration

of such non-spin regimes is that roll and pitch angles generally do not

have equilibrium (steady state) values, so that these variables must be

decoupled from the basic system. This is done by neglecting gravity

I" effects. The results are similar to those obtained with Drevious models

(e.g., aircraft H). However, since angle-of-attack data were available

I only to -10 degrees, roll daparture studies with aircraft F were somewhat

3r
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limited. A study of the nature of equilibrium surfaces in the "transition"

region between roll departure and flat spin has also been made.

In what may prove to be a very useful result in the analysis of

spin motions, it was found that equilibrium surfaces in the spin regime,

which have all of the features of the standard spin equilibrium surfaces,

can be generated using the lower-dimensional "non-spin" equilibrium

system. In this system, gravity is assumed to be zero. It should be

emphasized that the numerical results are often different, but the shape

of the curves is quite similar. This approximation has been made only in

the study of flat, developed spins. These spins are characterized by

high a SPIN values, and low spin equilibrium pitch angles (eSPIN). With

this situation, gravity terms in the dynamic equation for a are small.

Finally, for many of the spin conditions, changing the value of V,

the velocity magnitude, by 30% had a greater effect on the equilibrium

curves than did eliminating gravity.

Time history runs of spin conditions for aircraft F have been made,

and results confirm the predictions of the equilibrium surfaces. Those

runs which begin in the developed flat spin condition follow quite accurately

the results predicted by the spin equilibrium curves. Runs which attempt

to achieve flat spin from non-spin conditions were also made. It has

been found that, as reported in Bihrle (1976), ensuing motion in spin

regions is highly sensitive to both the initial conditions and the control

sequencing. Also, we discovered that it is much easier, for the given simu-

lation model, to achieve equilibrium spin from "trim" flight conditions

(controls neutral) when the velocity magnitude is held fixed. This is

I

. . . . mm m m I
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equivalent to both adjusting thrust magnitude and vectoring the thrust,

to keep it aligned with the current velocity vector and keeping con-

I stant magnitude. This is an approximation, but it does obviate the

need at the current time to become concerned with the role of vehicle

Sthrust in post stall and spin entry conditions. Such a concern can

be more readily dealt with when more comprehensive models such as the F-4

are implemented. Similarly, spin recovery simulations have been made,

1 and the results again indicate that the aircraft F model is highly sensitive

to the recovery control sequence. We expect to develop a systematic re-
I ~covery methodology once the spin bifurcation surfaces are completed.

I

I

S [ __ _ _
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1.2 Previous Work

Most of the theoretical and experimental results relating to the

characteristics of spin motion has been performed at the NASA/Langley

Research Center. The majority of this work has been experimental in

nature. Theoretical, or analytical, results have been hampered by two

factors: 1) the highly nonlinear nature of the spin regime, and 2) the

difficulty both of obtaining wind tunnel data which are relevant to spin

motions and of effectively correlating these data with the actual air-

craft's performance.

Klinar and Grantham (1959) used traditional linearized analysis tech-

niques to study flat, steady spin behavior. However, similar efforts done

previously have been limited to reliance on the limited conventional

static and forced oscillation aerodynamic data. These data do not always

represent adequately the highly complex flow phenomena associated with

flight in these stall/spin regions. Consequently, the wind-tunnel tech-

niques were expanded. Neihouse et al. (1957, 1960) report on the develop-

ment of a rotary balance mechanism by which a model is spun freely about

selected spin axes, over wide ranges of angle-of-attack. They also dis-

covered that differences between the model results and those of the air-

craft became more pronounced with current high-speed designs. The dif-

ferences were felt to be due to such factors as possible aerodynamic

scale effects (or Reynolds number effects) and variations in testing

techniques between airplanes and free-spinning-tunnel models.

Analysis made by Scher and Anglin (1959) further determined that

different kinds of spins are entered depending upon whether the aircraft
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was initially in a trimmed, level flight condition or spin entry was

I achieved from an applied yaw rotation which simulates the spin-tunnel

mode. Using BACTM on our aircraft F model (Chapter III), we obtain

I similar results. Their results again emphasize the importance of Reynolds

5 number effects as well as tunnel test techniques. More recently, Bihrle

(1974, 1976) corroborates the large effect of Reynolds number on spin

Saerodynamic characteristics. In addition, he recognizes the role of

gravity in spin behavior and proposes scaling the models so that the Froude

I number (a dimensionless quantity relating the relative effects of aero-

dynamic and gravitational forces) remains unchanged. Using unpowered

models, Bihrle (1976) also shows that the type of subsequent spin motion

is highly sensitive to the aircraft's initial condition (attitude, control

setting, attitude rates, etc.); and that spin motions which ensue

are highly sensitive to the sequencing and timing of the pro-spin control

actions. He also found that changes in inertias, side force coefficients,

and initial roll angle do not significantly influence developed spin;

but that the pitch damping coefficient and center of mass location is

important.

As both Bihrle (1976) and Anglin (1977) mention, it is necessary to

combine the different types of aero data in order to have a reasonable

model. In most instances, rotary balance data, has limitations because

it is evaluated at relatively few control settings, and is very un-

reliable for angle-of-attack less than about 500. In other analytic

i results, Anglin and Scher (1964) not only use extensively both the con-

{ ventlonal and rotary balance data to study fairly steady developed spins

[]
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and recoveries, but also define and use a non-dimensional spin-energy

factor (Eq. 3.2.48 in Chapter III of this report) to indicate the relative

difficulty of spin recovery. This factor is seen to be related to the

antispin yawing moment coefficient. Further, they found that the

antispin rolling-moment coefficient depends both on this energy factor

and upon the moment of inertia about the longitudinal axis.

Prior to, and concurrently with, the analytic efforts briefly ref-

erenced above has been an extensive program of experimental flight tests

and evaluations conducted by several government agencies and the military

branches. These results are generally restricted to the particular air-

craft being studied, and are typically aimed at developing recovery tech-

niques and avoiding spin entry. Rutan et al. (1970), Sallada et al. (1967),

Savidge (1970), Glenzer (1970), Carlson (1970), Krings and Weber (1970)

and Shaw and Shields (1970) all report on the results of spin-oriented

flight test experience.

Anglin (1977) reports that much remains to be done in terms of

providing an aero data base for spin regimes which will be sufficiently

accurate to enable adequate simulator prediction of actual aircraft

response. As we have also found (Chapter Il1), he describes a large

region in the yaw rate - angle-of-attack plane, located between the

low angle-of-attack and developed flat spin regions, in which neither

the conventional aerodynamics nor the more recent rotary-balance aero-

dynamics alone is adequate to describe the post-stall gyrations, spin

entry and oscillatory spin motions which characterize this region. Further

work is needed, he concludes, on understanding the behavior in this region;
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I
and this requires the development of an aerodynamic model which incor-

3 porates features of both the conventional and rotary aerodynamics.

Other recent research worthy of note includes work by Young (1974),

I who used a steepest descent optimization technique to develop control

I histories for spin recovery. Adams (1972) showed that several spin modes

and types are possible using representative aircraft models, and Moore

3 et al. (1971) show that use of a fixed-base simulator can give results

sufficiently realistic for studying stall/spin characteristics of air-

I craft.

J The previous work described above has supplied us with much of the

insight and direction needed to adapt BACTM to spin analysis problems,

and to clearly outline areas in which BACTM may be utilized to investigate

these problems. In the following chapters, particularly Chapter III,

it will be seen that our results are in general agreement with the above;

and, further, that BACTM has added fresh insight into many of these problems

and possesses the capability to enhance even more our understanding of

spin phenomena.

7 o__ ___ _ _ _ __ _ __

---
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1.3 Summary of Significant Results

The significant milestones achieved on this project are given below:

* Application of BACTM to a six DOF aircraft model, with comprehensive

aero data (aircraft F).

" Development of simulation model for analyzing spin behavior.

" Study of the characteristics of spin motion, and of currently used

control procedures to simulate spin entry and effect spin recovery.

" Representation of tabular aero data in analytical form by means of

cubic and bi-cubic spline functions.

e Expansion and generalization of methodology for generating the

equilibrium and bifurcation surfaces of BACTM. Reliance on para-

metric continuation methods derived from work of Davidenko (1953).

" Development of continuation methodology, based on work of Rhein-

boldt (1977) and Keller (1977), which can compute all branches

passing through a "bifurcation point."

* Generation of equilibrium curves for aircraft F in flat spin, in-

termediate spin (angle-of-attack about 750) and stall departure

flight regimes.

e Time history simulation runs of the aircraft F model to

verify some of the equilibrium results; and to begin an analysis of

the dynamics of spin entry and recovery from developed, flat spin.

e Development of an accurate and efficient means of computing numerical

derivatives, using splines.

. . . . .- ... . . ..
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I * Demonstration that flat developed spin motions, in which angle-of-

g attack is high and pitch angle is low, may be approximated on a first-

cut basis by assuming negligible gravity.

3 . Observation that changing the value of V by about 30% has a more

significant impact on the shape of the equilibrium curves than does

I neglecting gravity.

9 Observation that a developed flat spin for aircraft F is featured

by an extremely tight spiral, whose diameter decreases as the (pro-

1 spin) rudder setting gets more extreme, and which drifts slightly,

due to nonsymmetric lateral aerodynamics at high a. The spin

velocity, then, is almost entirely vertical, and the spin rotation

produces about 0.5 g's acceleration.

* Demonstration that a high-t limit cycle condition (steep, oscillatory

spin) is reached both by a stall-departure maneuver starting from

trim conditions, and by a spin recovery maneuver starting from the

flat spin equilibrium conditions. The limit cycle family provides

the link between the high-ot equilibrium states and the trim equilibrium

states. The recovery from this high a limit cycle condition by a

fixed change in control settings is possible, since the stability of

the limit cycle varies greatly over the physical range of the aero-

surface control movements.

1 '_ _ __ _ _ _ ___ _ _
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1.4 Organization of the Report

The report is organized into two main chapters, II and III, and

a supporting chapter, IV. Chapter II contains a discussion of the-techniques

by which BACTM was modified to enable the study of the spin behavior of

aircraft; also included in this chapter is material on chaotic motion

and strange attractors. Chapter III describes the use of BACTM to

analyze a particular aircraft model, Aircraft F, in all high-a regimes,

including spin. There is extensive discussion of Aircraft F's behavior

in terms of equilibrium surfaces and time history simulations. Chapter IV

briefly discusses other topics of interest, including spectral analysis of

chaotic motions and a preliminary look at using BACTM to synthesize a

simple command augmentation system. Conclusions anj recommendations are

stated in Chapter V, and a list of symbols and nomenclature is includeo

in Appendix A.
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£ CHAPTER II

Further Developments of Bifurcation Analysis and

I Catastrophe Thoery Methodology (BACTM)

I This chapter describes in detail the numerical algorithms used for

i computing equilibrium and bifurcation surfaces for a general nonlinear

dynamic model of an aircraft under stall and spin conditions. Notation

1 for the symbols presented in this chapter is given in Appendix A.

2.1 A General Computational Procedure Based on "Continuation" Methods

Continuation methods refer to those numerical techniques which "con-

tinue" a solution line, or locus, from some point in the state-parameter

space where the solution is known. That is, suppose the solution to the

nonlinear algebraic system

f(x,6) = 0 (2.1.1)

is desired. In this equation, f and x are each vectors of dimension n

n
(a more concise, mathematical way of saying this is f,xeR ; which means

that f and x are elements of the Euclidean n-space of real numbers, that

is, they are n-dimensional). Also, 6 in this equation is a scalar, and

has a special role as the continuation parameter. The idea behind the

continuation methods is that we somehow know all solutions x satisfying

(2.1.1), for a given 6 = 6 0* These methods then supply a means of explicitly

varying 6 from 60 to some desired value, 61, where analytic or numerical

solutions are difficult to obtain. As an example, suppose we wish to know

V.
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all values of x satisfying f(x,6)=x 3 +2ax 2 +bx+6 : 0 at any given

value for 6. It is clear that at 6=0, we have three solutions,

x= (0, -a± V'a2 -_U). This, then, is a natural starting point for continuing

the solution to some nonzero value of 6. Note in this example that a and

b are also parameters, but that they remain fixed in value for the entire

process.

Continuation methods have been applied to several varieties of prob-

lems which are typically multi-dimensional, nonlinear and possessing no

"analytic" solution, i.e., a solution which can be explicitly derived.

Problems which have been solved using continuation methods include certain

kinds of two-point boundary value problems and boundary layer problems

(including singular perturbation problems), in addition to the algebraic

problem defined by (2.1.1).

The type of problem of interest here is that of solving a system of

nonlinear algebraic equations of the form (2.1.1). In our applications,

6 e {6a,6e,6r}, (2.1.2)

the set of aerosurface controls--aileron, elevator, and rudder, respectively.

Given that some solution point xO(60) has been found (such a solution

by definition satisfies (2.1.1)), the point x0 is called C1-regular if the

Jacobian

F " (2.1.3)

L nx J
an nxn matrix, is nonsingular (invertible). Otherwise, it is a singular t

I
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point. The notation C1 refers to tie continuity of f(x) and all of its

first derivatives.

The solution to (2.1.1) at x0 is "continued" through other solution

points by varying 6 over some range of values. For any regular point

0 n 1
(X ,60)eRnxR, the implicit function theorem ensures the existence of a

unique regular solution to (2.1.1) through this point. The notation

3 Rn x RI means that the (n+1)-space to be considered is comprised of two

particular subspaces: Rn for the state variables x, and R1 for the scalar

continuation parameter. Continuation solution algorithms generally fall

into one of two different conceptual classes. The first class was initially

investigated and developed by Lahaye (1934, 1948), and the second approach

is usually attributed to Davidenko (Rall, 1968). Davidenko's approach is

often called continuation-by-differentiation, and that of Lahaye belongs

to the class of iterative continuation techniques. The Davidenko approach

consists in the application of some suitable discrete-variable method to

solve

d F 0+ 6e D, x(60)= (2.1.4)

where D is the set of admissible parameters, e.g., if 6=6e, then D=[-25,10]

for aircraft F. Eq. (2.1.4) says that 6 is to be varied in a way that

ensures (2.1.1) being always true. A problem with this approach, es-

pecially where n is large, is the necessity for evaluating at each point

the matrix F and the (n x 1)-vector

- (2.1.5)

-6 m6
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3
and this is usually very costly. If we try to reduce the order of the

system model to offset this difficulty, there may arise fatal accuracy

problems. On the other hand, Lahaye's iterative continuation approach

uses a locally convergent iterative method (of a Newton-Raphson nature)

to solve (2.1.1), the original equation, at an increasing (or decreasing)

sequence [6k} of parameter values in D. In its basic form the method

starts at the known solution x0 and selects steps (6k+1- 6k) such

that the last iterate at 6k is an acceptable starting point for the itera-

tion at 6 k+l* At each point, (2.1.1) is satisfied to within some ck > 0 '

where £k= 11fk I1 "  (See Appendix A for notation.)

The recent trend has been to combine the two ideas by using a feasible,

low-order method of solving (2.1.4) as a predictor and then following it

with a locally convergent iterative process for (2.1.1) as a corrector.

In particular, Klopfenstein (1961), Keller (1977), Rheinboldt (1977) and

Kubicek (1976) have developed versions which seem particularly suited to

the task at hand: the computation of equilibrium and bifurcation surfaces

for high-performance aircraft operating in high-a (nonlipear) flight re-

gimes. One of the major results described in this report is the modifica-

tion and adaptation of the relevant techniques presented in the above

references to two principal aspects of BACTM analysis, the computation

of equilibrium surfaces and bifurcation surfaces. The utilization of these

algorithms, and the refinements needed to handle certain situations, is

discussed below.

More recently, we have found that other methods may be better suited to

the particular application of computing bifurcation surfaces for aircraft

in the spin regime. This is because of both the dimensionality of this

ii
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I
system (increased due to gravity coupling) and the highly nonlinear charac-

I teristics of the motions in developed spin. Briefly, these methods in-

volve techniques which avoid the computation of the Jacobian (Ralston, 1975,

Ralston and Jennrich, 1978). A derivative-free algorithm as well as one-

I dimensional search algorithms in the corrector phase of continuation, will

also be discussed below.

3 Consistent with the notation employed elsewhere in this report, the

equilibrium system of equations has the same form as (2.1.1), viz.:

I f(x,6) = 0 (2.1.6)

Iwhere 6 e (6a,6e,6r) and the dimension and form of the state x and the function

(mapping) f depend, in general, on whether one is in a spin or a non-spin

flight regime. See Section 3.2 and Mehra, Kessel, Carroll (1977), respec-

tively, for the distinctions. Eq. (2.1.6) is derived from the aircraft

dynamic equations, which are concisely expressed as

= f(x,6) (2.1.7)

where

6 (6a,6e,6r) (2.1.8)

(Hence, the mathematical definition of dynamic equilibrium is xO. For

d na stable equilibrium, - : 0, for all n>O)
~dtn

The bifurcation system of equations has the same form, but an addi-

tional equation is added, to specify the requirement that the Jacobian

matrix F be singular at a bifurcation point. This is in addition to the

equilibrium requirement (2.1.6). We denote the resulting set of equations as

ii



20

9( ,6 i ) : 0 (2.1.9)

Like (2.1.6), (2.1.9) has the form of Eq. (2.1.1), and can thus be solved

by the continuation methods presented here. Furthermore, (2.1.9) is re-

lated to (2.1.6) as follows:

(2.1.10a)

where

Y 6 ie(sase'or), i j; (2.1.10b)

and

2Q.6 i)(2.1.11a)

where

A 4 det(F) (2.1.11b)

The solution of (2.1.9) yields a curve 6(6i), 6k fixed, in the control

space called a bifurcation surface. We are at liberty to choose any two

6 i from the control set (6a,6e,6r), but the third one, 6k' remains fixed

in value. Also, while the bifurcation surface is the particular curve

6j vs. Si, solution of (2.1.9) clearly supplies values for x as well, at

each point (6i,6j) on the bifurcation surface. The system (2.1.9) is

essentially the equilibrium system (2.1.6) augmented by the constraint

A= O. (This is discussed in more detail below.) The equilibrium system

dimensionality is consequently increased by one in the bifurcation system,

so that an extra dependent variable, 6 e (Sa,6e,6r), j# i, may be added.

I
~I,

_- 2 t . . . . . .. . .. . .
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I
The bifurcation surfaces are consequently more difficult to generate for

two reasons:

i) the size of the system is (n+1), where n is the size of the

equilibrium system. For the non-spin system considered here,

n=5, and for the spin system, n=8.*

ii) a much worse problem than (i) is posed by the presence of the

3 constraint on A, the determinant of the Jacobian of f. Even

in the n=5 case, it is wholly impractical to expand A analyti-

cally, so that evaluating the Jacobian of 9, (2.1.11a), of

necessity requires using a numerical differentiation algorithm

on at least the (n+1)th row of

G  1g i  (2.1.12)
L yj

Except for extra core and extra care, problem (i) above is relatively

straightforward to surmount. The second problem, on the other hand, re-

quires extreme caution and precision, in addition to more complicated

algorithms. Consequently, when using continuation-based methods re-

quiring the first derivative, the core and run-time costs are high.

We shall now discuss in more detail a particular predictor-corrector

continuation algorithm developed by Kubicek (1976).

2.1.1 Continuation Method of Kubicek (1976)

Kubicek's method employs the basic method of Davidenko (Rall, 1968,

*There is a dimensionality-flexibility tradeoff for the spin system, which
centers around the velocity variable, V. V can be solved for explicitly
in terms of the remaining 7 variables and the controls, but at some cost
in flexibility and adaptation to several aircraft models. We have opted
more for flexibility in this regard, and so n=8 for spin, not 7.

1 4
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Ficken, 1951, Davidenko, 1953) to solve (2.1.4), in combination with the

Newton method and Adams integration formulas. This particular method V
has become the basis for our continuation algorithms, since it

was found to be capable of solving accurately and efficiently a wide

variety of nonlinear algebraic equations required by the BACTM approach

to high-performance aircraft analysis.

Kubicek has introduced certain modifications to the basic continuation

methods of Davidenko which make the solution of Eq. (2.1.1) more feasible

on digital computers. In essence, this approach represents a subset of

the methodology assembled by Keller (1977), Rheinboldt (1977), et al.;

however, certain features of the Kubicek algorithm are worth detailing.

Basically, an arclength parameter is introduced to evaluate the de-

pendence x(6), which is assumed to be continuously smooth in the (n+l)-7

dimensional space (x,6). (This assumption is not necessary in the method

of Keller, which can handle the singularities, or bifurcations points.)

Quite often, x(6) is smooth in the augmented space Rn+ 1 and singular in

Rn. In such an instance, the system (2.1.4) cannot be solved, because the

(nxn) Jacobian F, Eq. (2.1.3), is non-invertible, i.e., singular. This

happens at limit points, Fig. 2.1. At such points, 6 is no longer mono-

tonically increasing or decreasing, and F is singular. However, a properly-

selected arclength parameter will remain monotonic at limit points; this

enables smooth continuation around limit points, as shown below.

By introducing the arclength parameter s, so that (x,6) become

[x(s),6(s)], the system (2.1.4) "inflates" to

Df

F; + -a = 0 (2.1.13)

- -~ ~---
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and we choose initially a standard Euclidean arclength relationship

(x 12 dx 2 2
dxn ) d6 1 + 2 + 2 + 2 1 (2.1.14)

d +  / =  " + Xn

where

dx

(2.1.15)

d6

Eq. (2.1.14) is comparable to the more complicated pseudoarclength normali-

zations introduced by Keller (described in the next section), which are

useful in the algorithms which solve for the branches at bifurcation

points*, shown in Fig. 2.1. Kubicek generalizes the solution procedure

by generating a nonsingular (nx n) matrix of the form

aF 1 __ 1 f 1 af a 1
x I aX k_1' axk+1'  axn+1

af.
rk a (2.1.16)

x1

a fn  f af afafn n n

L'a "1 xk-l' Xk+1' 'Xn+lj

*Singular points are points (x,%6) where the Jacobian matrix F is non-invertible,

or singular. Both limit and bifurcation points are singular points. !

i Ii



A 25

In this definition, we have set xn+l 6 for consistency. Note that Fk

£ is nxn square because one column, af/xk, is eliminated. Since ke (1,n+1),

there are n+1 possible rk to analyze.

I We shall not go into the full detail here (Keller, 1977, has such

detail), but will mention that at least one nonsingular r k does exist at

a limit point, thereby allowing continuation through that point. This

3 is a consequence of the fact that, while F is singular, it has rank n-1

at a limit point. Thus, the corank, equal to (n-rank), is 1. At a bi-

I furcation point, the corank exceeds 1, and there is no invertible rk' it

is possible, therefore, to associate the corank of F at singular points

with the number of equilibrium branches intersecting at that point. At

1a simple bifurcation point, for example, F has corank 2 and two branches

intersect (Fig. 2.1). At regular points, F is nonsingular; thus corank

of F is zero, but a (smooth) branch also passes through. If an xk,

1 k 5n+1, can be found so that its corresponding rk is regular, then

the system (2.1.13) can be recast as follows:

- k ( j n+k + (-k )Xk 0 (2.1.17)
1<j_<_n+l

In this equation, the vector (dxj/ds) is n-'dimensional, as the kt -h

element is not used, and xn+1 -6. Eq. (2.1.17) can then be solved for n

of the n+1 parametric derivatives:

!dsjk = - ( Xk (2.1.18)

~lgJ__n+l

I
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or, equivalently,

dx dxk
ds: = aj - , = 1,2,...,(k-1),(k+l), ... (n+l) (2.1.19)

The final parametric derivative is determined by using (2.1.19) in Eq. (2.1.14):

(Xk)2 = 1 + 2) (2.1.20)
j=1 'j~ k

In Eq. (2.1.20), the sign ambiguity is resolved by the orientation of the

arclength parameter s along the curve. This may be done somewhat arbi-

trarily at the solution starting point, (xoso), which must be supplied (or

obtained from a Newton-type iteration). This solution branch will then

emanate in one direction from the starting point, and can be made to emanate

in the other direction by selecting the other sign.

Thus, the method of Kubicek is more "robust" than that of Klopfen-

stein (1961) in that the latter retains the special role of 6 as the

continuation parameter--Klopfenstein inverts rn+1' which is actually F,

at every point rather than the more general rk" Numerical difficulties

are more likely to be avoided by Kubicek's algorithm, which at each step

utilizes the "best" continuation parameter xk. The value of the

subscript k is determined by means of Gaussian elimination using con-

trolled pivoting. That is, at any point in the reduction process for in-

verting Fk' the current pivot element chosen from rk, Yij' has the largest

magnitude of all candidate elements. Once yij is chosen, all remaining

ith row and jth column elements of rk are eliminated as candidate elements

i- ro and olum
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I
for selection of subsequent pivot elements. Then, yij is used to reduce

all other elements in column j to zero by means of the so-called "elemen-

tary matrix operation"

{Row k of rk} = p . fRow i of F + {Row k of Fk} (2.1.21)

where the scalar pZ is adjusted so that (2.1.21) produces a zero for

I element yj, P,# i. That is, to zero all elements of column j except the

i it , the right side of (2.1.21) becomes

P Z* Y i j + Y j = O ,

Pt = -Ykj/yij (2.1.22)

The process continues in this manner, one column at a time. Eq. (2.1.22)

indicates the role of the pivot elements yij in the matrix inversion

process. If at any step in the process no nonzero yij can be found, the

matrix is singular.

The process just described is a Gaussian elemination procedure. The

pivoting is controlled in the Kubicek algorithm by allowing each column

in Fk to be selectively scaled. This allows the user to "bias" the

selection of a particular variable from (x,6) as the continuation parameter.

Typically, of course, the desired choice is 6 = xn+l. The scale parameter

for the column associated with Xn+1 is then some value less than 1., say

0.001, while those for the other columns may be kept at 1. This approach

has been developed by Deist and Sefor (1967).

The complete procedure involves performing the elimination process

1 (2.1.21) n times on the n-by-(n+1) array
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-, = F, (2.1.23)

In so doing, n columns are selected for rk, under the selection criterion

that yij have the largest magnitude of the candidate elements. This

insures that the "most nonsingular" Fk is selected of the (n+1) possi-

bilities. The one unselected column in this process becomes column k.

When the resulting reduced F matrix is deprived of this column, rk re-

sults. rk is k Of (2.1.16), but operated on several times by the ele-

mentary matrix operations (2.1.21). r'k has the property that there is

exactly one nonzero element (indicated by x) in each of its n rows and

columns, e.g.,

0 0 x.. 00

0 0 0 x 0

r k :(2.1.24)

x 0 0. 00

0 0 0 0 x

O x 0.. 00

Eq. (2.1.17) thus becomes

Fk- + f-xk Xk = 0 (2.1.25)

where f is the kt - column of the reduced r matrix.xk

Upon expansion, (2.1.25) has the form of (2.1.19), so that the a

from the latter expression are readily extracted, and the n xi dxi/ds
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I
are found from (2.1.19), it k. Also, (2.1.20) produces Xk' Given the

n+1 xi elements, the Newton step size Ax is obtained for the full (n+l)-

dimension x. Note that Axk=O in this procedure. What the above process

has effectively done is compute a Newton iteration step, based on the

standard multi-dimensional Newton-Raphson formula

Ax(P) = -F-If(x(P)), (2.1.26)

where p is the iteration counter (x(O) is given), and x includes the

original x, plus 5.

To summarize, we have solved (2.1.17) for the jdx/ds, jtk, l<jfn+l;

i.e., we have found the aj in (2.1.19). Using Eq. (2.1.20), which represents

the standard Euclidean arclength relationship utilized by Klopfenstein and

Kubicek, all (n+l) quantities ( ,t) are determined. These derivatives are

then used by the Kubicek algorithm to predict the next point on the curve.

This is done by using Adams-Bashforth integration formulae. The logic of

Kubicek and Deist and Sefor which regards the parameter 6 as interchangeable

with any state element x. at each point makes this algorithm very robust
1

in terms of singularities and numerical roundoff difficulties. This is

because the value k can change from point to point along the continuation

solution. After the Adams integration step (predictor step), the new

point (x,6), where all n+1 quantities have changed, is the next starting

point for the Newton iteration (corrector step) to the point again satis-

fying (2.1.6).

The Kubicek algorithm has been discussed in considerable detail be-

cause it plays a major role in the adaptation of BACTM to handle large
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order, complex systems. However, we have implemented other methods which,

although not used as much at this point, do exhibit promise in certain

aspects. Ultimately, it is hoped to develop a unified, comprehensive and

flexible package for BACTM which utilizes the most appropriate algorithm

for the task at hand. Some of the other algorithms which are currently

being developed will now be discussed.

2.1.2 Continuation Method of Davidenko (1953) and Numerical Differentiation

If Eq. (2.1.1) can be put in the form:

dx
d- - M(x,6) (2.1.27)

any number of numeric integration methods will be able to solve for a

complete branch of solutions once an initial solution is found. This

transformation is accomplished by differentiating Eq. (2.1.1) to obtain

(2.1.4) so that

M -F-1 (2.1.28)

When this equation can be solved, either an interpolatory integration

method (such as Runge-Kutta) or a predictor-corrector method (such as

Euler-Newton or Adams-Bashforth) can be used to continue along a branch.

This is the essence of Davidenko's method, which has subsequently been

refined considerably.

The first task, then, is to solve for the partial derivative of f

with respect to any xi or 6, since these comprise elements of rk. In

I
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I the past we have solved for these derivatives analytically while setting

up the problem. However, this severely limits the range of problems which

may be solved and, moreover, makes the process of applying the technique

to a new problem extremely complicated.

As a result, we have implemented a numeric differentiation routine.

This routine is based on a cubic spline fit* to the function f(x,6),

3 evaluated at selected points y= (x,6), centered on y, the point where the

actual derivative, af/y= f/a(x,6) 1r is desired. To understand the

process more readily, consider the scalar case: x, f, 6eR'. The goal,

then, is to numerically evaluate af/Dx and 9f/M at y 0  (xo,6o). For

af/x, evaluate f at the five points

f((x 0 + p),60), p = -2,-1,0,1,2 (2.1.29)

Note that we have f(xo60 ) at p 0. The increment size E is chosen so that

IIf(Yo) -f(Y)Il 10 - 4  (2.1.30)

This choice of E allows sufficient accuracy of the fit without introducing

serious numerical difficulty; e must provide a large enough spread in Ay

so that the slope obtained is representative, yet not be so large as to

deteriorate precision. We then use each of the five y as knots for the

spline fit. The polynomial approximation resulting from this is analytic

at yo, by definition, so that evaluation of af/ax at yo is straightforward.

Similarly, for f/36 at yo, fix x at xO, evaluate f at the five points

f(xo,(60+ pE)) (2.1.31)

*Curve-fitting using splines is discussed in detail in Section 3.2.1.

[
S --*- - . - --,---
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and make a spline fit and evaluation as before.

The extension to x,feRn follows immediately. For each f/x i ,  I
make five evaluations of the vector f by varying x. only, keeping x =x.

3 ' i0
j i, and 6= 60. Each of the fm are then spline-fitted, and this pro-

duces the set of vectors (f m/xi), for each xi, and 6.

2.1.3 Keller-Klopfenstein Continuation (Keller, 1977)

Limit points. Using the Davidenko method, all points along a solution

branch can be computed as long as the nxn matrix F can be inverted. If

F is singular with:

dim N(F) 1 (2.1.32)

where N(.) denotes null space, special procedures must be used at such a

point. The null space dimension here is equivalent to the corank of F.

Adding a "normalization" equation and a new parameter to the system can

avoid this problem in some cases. Keller (1977) uses the normalization:

N T(X-Xo + x l- WOO -60) - (s- so): 0 (2.1.33)

where s is the arclength parameter, 0<6< 1, and x0 9 609 and s0 are the

values at the initial point for the branch in question. The system now

becomes:

- - = 0 (2.1.34)N 3(y,)

where:

-1



A 33

I
(2.1.35)

g This system can be dealt with in the same manner as Eq. (2.1.1).

The normalization N3 is said to have better numerical properties near

3 bifurcation points. Keller proves that, using (2.1.33) as the normali-

zation equation, ag/ay is nonsingular if and only if:I
F is nonsingular (2.1.36)I

or:

1f/36 0 R(F), where R(.) denotes range space. (2.1.37)

I
Case (2.1.37) corresponds to a "limit point." At such a point (see Fig-

j ure 2.1) two branches do not intersect, but dx/d6 --. In this case, solu-

tion of the iugmented system (2.1.34) continues normally. The proof can

be developed by utilizing Gaussian elimination techniques. We shall dis-

cuss this and other aspects of Keller's method in more detail in later

reports.

For dealing with limit points alone, Keller's method is somewhat

cumbersome, particularly in the choice of N3 for an arclength relationship.

The method of Kubicek, discussed in Section 2.1.1, is quite adequate at

limit points, using the simpler normalization (2.1.14). However, the

Keller approach is more comprehensive, and can handle the computation of

Iequilibrium branches at bifurcation points. We shall now outline how this

is done, saving some of the detail for later reports.

I Bifurcation points. If, at some point on a branch, neither condition

:14 _ _ _ __ _ _ __ __ _ _ _ _
i . ---l-- ---- . - --.- - --.- --- ----_ _ _ _ _ _ _ _ _ _
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(2.1.36) or (2.1.37) is satisfied, DU/ will be singular and continuation

of the augmented system will also fail. This is a "bifurcation" point,

where at least two branches cross. At such a point two steps must be

accomplished. First, the bifurcation must be skipped over so that con-

tinuation may proceed along the same branch. Second, a point on the other

branch must be found as an initial point for continuation along it.

Any predictor-corrector method can be used to skip over a bifurcation

point. This simply involves choosing an initial solution and step size

for a single prediction step for which the correction step will converge

to a solution past the bifurcation point.

Finding the second branch at the bifurcation point is more complicated.

To begin, consider a simple bifurcation point, at which two branches inter-

sect. Here, the rank of r is n-1. r is an n-by-(n+1) matrix, recall.

Multiple bifurcation points have more than two branches intersecting at *

and the rank of r is less than n -1. By examining the nature of the

various terms in the power series expansion of f(x,6) near such a bifur-

cation point, y*, one realizes that the two branches emanating from y* lie

tangent at X* to a plane defined by the two eigenvectors associated with

the two zero eigenvalues of rTF, which is a square (n+l)-by-(n+l) matrix

of rank n-1. This matrix, then, has a corank of (n+1)-(n-1)= 2; hence,

two zero eigenvalues. Once r is found, therefore, the plane is readily

determined, and all branches can be located by a search in this plane

for f= 0 points. This search is done along an arc of fixed radius from

, and sufficiently close to y*.

To summarize, the algorithm of Keller differs from that of Kubicek

in these significant areas:
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I
(i) The pseudo-arclength normalization of Keller is more compre-

Ihensive than the purely geometric relationship (2.1.14) employed by

Kubicek, and is capable of dealing with bifurcation points;

I (ii) The Gaussian elimination procedure for selecting xk as con-

tinuation parameter at each point seems to be capable of effecting numerical

solutions more efficiently. Incorporating it into Keller's algorithm

3 could well enhance its usefulness.

(iii) A final distinction which has practical, if not theoretical,

significance, is the means by which one proceeds along the solution

branches. Both schemes utilize predictor-corrector algorithms, with some

form of Newton method as a corrector:

-new old - if (2.1.38)

However, Kubicek uses the Adams-Bashforth explicit multistep method, with

variable order, to integrate (2.1.19) and (2.1.20), whereas Keller suggests

a modified Euler-Newton scheme, which is really a first-order Adams

algorithm. There is more flexibility in the more complete Adams method.

2.1.4 Applications of the Kubicek Continuation Algorithm

The algorithm works exceptionally well as coded for solving aircraft F

equilibrium surfaces, (2.1.6), both in spin and non-spin regimes. There

is consequently no need to discuss the algorithm per se with regard to

these surfaces. However, the computation of bifurcation surfaces of air-

craft F, defined by (2.1.9), did necessitate more care in setting up the

problem and, in the case of spin bifurcation surfaces, required in additionI
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some modification to the algorithm itself. These points will now be

discussed in more detail.I

2.1.4.1 Bifurcation Surfaces

Let (6) represent an equilibrium solution to (2.1.6). It is obvious

that the variation of one element of 6 (6= (6a,6e,6r)) will generate an

equilibrium surface in the state-control space. A bifurcation point on

the equilibrium surface implies a change in structural stability for

control variations in the neighborhood of the bifurcation point. Points A

and B are bifurcation points in Figure 2.2, and the loci of their pro-

jection onto the control subspace is what we call a bifurcation locus.

xi
1

f=O

B

A

ab

Figure 2.2

Equilibrium Surface

The set of bifurcation loci on a particular control subspace is called a

bifurcation surface. The locus is generated by varying any two of the

three controls, holding the third one fixed. It is obvious that the bi-

furcation points are a subset of the equilibrium points. The criterion

for an elementary bifurcation point* is

*An elementary bifurcation point has a zero eigenvalue. More general bi-
furcation points such as Hopf Bifurcation points have purely imaginary
eigenvalues. (See Mehra et al. (1977) for details.)



A 37

A det(F) = det =0 (2.1.39)I lI=

(i.e., the Jacobian is singular). The difficulty at bifurcation points

I arises from the fact that, if

I f(x,6) = 0 (2.1.6)

is true, then

dx af
Fd + -6 = (2.1.4)

when 6 is one of the controls selected as a parameter. (See Section 2.1.)

It is seen from Fig. 2.2 that dx/d6 is the slope of the f=0 locus for

values of x and 6 on that locus. Also, points A and B are characterized

Iby the fact that dx/d6, the slope, is infinite. Hence, the continuation

solution

dx 1f

U d F I (T6 £(2.1.40)

breaks down. This is equivalent to saying that the inverse of the

Jacobian F does not exist, i.e., Eq. (2.1.39) holds.

Thus, unadulterated continuation methods break down at such points,

as these methods solve for j(6) by integration of (2.1.40). Kubicek's

algorithm avoids this by introducing an arclength parameter and by aug-

menting the Jacobian with an extra column representing the parameter, and

eliminating (via Gaussian reduction) that column which leaves the most nonsin-

I gular square matrix (this amounts to interchanging the parameter 6i with

P
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an xk as necessary; xk then becomes the parameter and continuation via an

equation like (2.1.40) or (2.1.18) remains valid).

To summarize, Eqs. (2.1.6), evaluated for some starting value x-, and

(2.1.40), which continues the solution from iO, generate equilibrium

surfaces. Bifurcation surfaces--represented by points a and b in the con-

trol-space in Figure 2.2 --are generated in a similar way, with the basic

equilibrium system being enhanced by one dimension (representing the con-

straint (2.1.39)). Thus, the bifurcation system is indeed given by (2.1.9).

For equilibrium surfaces, one of the controls is selected as a parameter,

leaving the other two fixed. For bifurcation surfaces, one of the controls is

still a parameter, but one of the remaining two controls becomes a state variable,

because of the introduction of L in g (see (2.1.11a)). The bifurcation

surfaces then are generated by a system similar to (2.1.13), viz.:

~~ds~ =&S L i ~+~* 0 (2.1.41)

or, in compact form,

= G + 9 6  0 (2.1.42)

As outlined in Sec. 2.1.1, Eq. (2.1.42) is solved for the (n+1) derivatives*

(the (n+1)' element of y is 6j, as defined in (2.1.10a)), as functions

of the scalar 6. This latter derivative is then determined from the arc-

length normalization relationship

*In the spin flight regime, n=8. Thus, the equilibrium system (2.1.6) is

8th order, the bifurcation system (2.1.9) is 9th order, and the matrix r
of Sec. 2.1.2 is a (9x 10) array.
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!
i T + (0)2 1 (2.1.43)

See Sec. 2.1.1 for details.

1 2.1.4.2 Non-spin bifurcation considerations

In the non-spin case, n= 5 (gravity effects are neglected and V is

- I assumed constant). However, even though this system is considerably smaller

than the spin system (for which n=8), the r array is of size 6x7. Fur-

I thermore, because

I
A = det(F) (2.1.11b)

tt
represents the (n+l)- h element of g (hence row (n+l) of

7G = -i, (2.1.12)~J

there are serious computational problems to consider.

These problems center on the computation of G and the (n+1)-by-(n+2) array

r = G , (2.1.44)

which is often more difficult than inverting the submatrix of rrk. For

example, the bottom row of r, (2.1.44), is given by

I r(n+l). (2.1.45)

[ where I is defined by (2.1.10a). It is of practical necessity to com-

pute at least this row using a numerical differentiation algorithm.

,!
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Even for n= 5, deriving the analytic expression for . is excessively labor-

ious, not to mention all of its partials; needless to say, there is no

point in speculating about the n=8 (spin) case.

Thus, the last row of r in either the spin or the non-spin case is

determined by numerical differentiation. The first column element in

this row, Y(n+1),l is given by 3A/ p. As described in Sec. 2.1.2, the

numerical differentiation of this term involves five evaluations of (p),

with all other variables fixed. For each state, and the two selected

controls, this must be done; altogether seven times for each of the last

row elements of F, in the non-spin case. Thus, 35 evaluations of ", are

needed each time an evaluation of r is made. There can be several

evaluations of r made for each point on the continuation solution, due

to the iterative nature of the Newton-corrector steps. Every evaluation

of A requires full evaluation of the matrix F. It is possible to do this

using numerical differentiation, but there is obviously a tremendous

saving in time to be had if the terms in F can be analytically derived,

as well as all other elements of r (F is a submatrix of F) for which

this is feasible.

Thus, the above strategy was adopted for computing ri, both in the spin

and non-spin cases; i.e., use analytic expressions for the elements ij

as- far as possible, using numerical differentiation only for the last

row of r, (2.1.45). This modification provided the opportunity to compare

the precision of the numerical differentiation results with the "exact"

expressions, and the numerical adequacy of the former was verified.

Another modification made to run bifurcation solutions was to evaluate
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the aerodynamic coefficients only once for every point actually accepted

as a solution point, and not every time F, or even f, is evaluated. This

results in considerable time savings, as the aero data for aircraft F

requires interpolation routines.

3 The modifications discussed above, when applied to the non-spin bi-

furcation system, can generate almost a solution point per CPU second on

the CDC 6400, an improvement by about a factor of 50 on the unmodified

i system.

2.1.4.3 Spin Bifurcation Surfaces

The spin bifurcation system worsens the "curse of dimensionality."

In this regard, incorporating an algebraic soluti - for V, which reduces

the basic system dimension from 8 to 7, does not help very much computa-

tionally. This is because all of the partials 4nvolving V in r would

have to be carried along by the chain differer iation rule. V could be

specified to be constant, but it is as yet unclear whether this action

would obscure transition dynamics in the pos'-stall departure and spin

entry flight regimes.

With this background, the n=8 spin system was incorporated into the

BACTM bifurcation package, modified as described above for the smaller,

non-spin system. Numerical difficulties were encountered immediately,

which centered around the Newton-Raphson iteration algorithm.* More

jspecifically, the problem lies with the Newton corrector step, computed

* by the relation

I 4 (k) ( (k+1) _(k)) :_l(y(k) (2.1.46)

*These difficulties were present as well when a scaled velocity, n4 V/Vscale

was introduced. Vscale was given a value which put n in the range

of values of the other variables, all of which are in radian units.

- -----l- - - --x ______
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&
where

T A(p,q,r,T,,V,0,0,6 ( ,6 (2.1.10a)

9 : ,6 i ) = (2.1.11a)

and

A det x = det (F) (2.1.11b)

(In the continuation process employed by BACTM, the Newton-Raphson al-

gorithm itself is considered a Corrector, as it refines the approximation

2= 0 iteratively. The Prediction step is made by the Adams-Bashforth

multistep method.) The algorithm above works quite well for all of the

BACTM systems except the spin bifurcation system. In this case, if E(k)

is defined as

E(k) jjq( (k),6i)j1 (2.1.47)

where y(k) is the kt-h Newton iterate at a (predicted) point designated by

(i,6 then, it typically happens that

E(k+l) > E(k) (2.1.48)

for the spin system. Worse, this happens over a range of k values, so

that the sequence {Ay(k) } becomes "unstable" with respect to the itera-

tion. If a solution 9=0 is found under these conditions, it invariably

• iI
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Iis at a point far removed from the regime of interest.

By the nature of the Newton algorithm, assuming ge CI, the class of

functions continuous in all first derivatives, there exists a region R

centered on Z(k) such that

SE* < E(k) (2.1.49)

g where the stepsize producing E* relates to Ay(k) by

Ay* = p(k)AY (k) (2.1.50)
0

where p(k) e (0,I] is a Euclidean metric between two points in R. Basically,

this says that if one cuts back sufficiently on the step size as given by

Eq. (2.1.46), then one will eventually find a step size (2.1.50) for which

(2.1.49) holds, if 9 is "sufficiently smooth."*

The above represents an aspect of one general approach to the basic

goal of ensuring a decreasing sequence { }(k)}; that is, the one-dimensional

search algorithm. These methods accept the minimizing direction as com-

puted by (2.1.46), even though it uses only first order information.

Then, a scalar one-dimensional search is made along this direction for a

point, *, which is "minimizing." Several algorithms exist, and two

have been implemented. The first of these merely halves Ay(k), evaluates

at that point, compares its norm to c(k), and halves the stepsize

eain, continuing until either E* <() or IIAII < 10-12. The latter con-

dition indicates either that 9 is not continuous at (k), or that the

first order information at that point is inadequate. This algorithm

was successful in some regions, but less so in others, even with

*This is easy to see geometrically if one constructs a scalar system from

Eq. (2.1.46).

_ _
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modifications such as permitting (2.1.48) up to three consecutive times.

Another one-dimensional algorithm which was implemented involves 1
considering only the segment along the direction A (k) between the points

(k) and ( (k)+A. (k)). If one defines a scalar arclength parameter o

such that (= 0) =Z(k) and. (a; 1) =Z(k+1), then it is possib .€ to co.-

struct a cubic polynomial in a using only previously computed quantities:

9( (k)), G(. (k)) and 9( (k+1)). The cubic is then assumed to approximate

the function c in this interval, and its minimum value should be close

to the function minimum. This method has fared little better than the

first one mentioned, but is has not been tested completely. A combination

of the above two algorithms is also being considered.

Other algorithms under consideration, but as yet not implemented, in-

clude one-dimensional search and a least squares method based on step-

wise regression. The latter is useful especially if G is nearly singular.

If singularity problems arise, the method of stepwise regression may be

employed, as it eliminates variables so that 9 is better parameterized.

The remaining variables are those which "do the most good" in reducing

e, or e2 = 119,12. Stepwise regression can deal with nonlinear formula-

tions and bounded spaces.

Another general approach which shows great promise, but is yet to

be tested, involves derivative-free algorithms. In these, the Newton

approach is forsaken entirely in favor of methods which rely only on the

evaluation of 9(y). By the proper sequence of (n+1) such evaluations,

a secant plane in n-space may be constructed. At each iteration, the use

of this plane along with the "optimality criterion"--i.e., minimizing

I
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!
the distance between a point in this plane and the desired point--provides

information for replacing one of the (n+1) y-points with a new point.

Then, the new set of (n+1) points defines a new secant plane which im-

proves the optimality criterion. In a convergent sequence, the secant

.4 plane iterates in the limit to the tangent plant which contacts the function

at *, such that 9(y*)=0, the desired solution. Ralston (1975) and

I Ralston and Jennrich (1978) discuss a specific derivative-free algorithm

(D.U.D.--doesn't use derivatives) which holds some promise for our

applications.

I

I

I

I F
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CHAPTER III

BACTM Applied to the Study of Aircraft F Stall-Spin Behavior I

This chapter describes in detail the aircraft model, designated

Aircraft F, which is used in this report for the study of high-a, post-

stall and spin motions. Also discussed in detail are descriptions of

stall and spin behavior; the nature of spin and stall; the dynamic equa-

tions which describe the above motions; the aerodynamic data for aircraft

F; and BACTM results for aircraft F in spin entry. stalling maneuvers,

wing rock, post-stall gyrations, developed spin motion, and spin recovery.

An explanation of the spin behavior of aircraft F completes the chapter.

3.1 Nature of Aircraft Stall and Spin Behavior

In this section a brief overview will be presented to provide some

insight into the physical phenomena of aircraft stall and spin. Briefly,

an aircraft encounters a stall condition when loss of lift occurs due to

excessive buildup of angle-of-attack (a). High performance aircraft are

particularly susceptible to this phenomenon if only because their design

goal is to operate near the extremes of the flight envelope in accom-

plishing mission objectives. Stall and spin are related because post-

stall behavior can include departure into spin conditions. Since, as

will be shown in this report, spin motions can be stable equilibria, it

is important to understand enough about spin phenomena to be able to

effect recovery control sequences which transfer the aircraft state from

the domain of attraction of spin equilibrium points into the domain of

I
1
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i
attraction of nonspin stable equilibrium points.

I 3.1.1 Nature and Characteristics of Spin

For most aircraft, high angle-of-attack departures from stall quite

I often proceed to entry into one of several spin modes. Whether a spin

-3condition is achieved, and if so, which one, depends to a great extent

on the particular aircraft configuration and control settings, as well as

3 the flight condition. In gereral, the spin modes are characterized by

the incidence angle (angle of attack), a. A typical classification of

I"erect" spin modes has five categories (Rutan, et al. (1970)):

(1) Steep - Smooth

(2) Steep - Mild Oscillation

(3) Steep - Oscillatory

(4) High-a - Highly oscillatory

(5) Flat

For certain configurations, "inverted" spin is possible, but this

particular phenomenon has not been investigated in this report. Other

investigators, e.g., Adams (1972) and Young (1974 classify erect spin as

steep, intermediate, or flat, and oscillatory or steady. At any rate,

the higher the equilibrium angle of attack is, the flatter the spin.

Typical values of a during a fully developed spin, derived from a study

of F-4 behavior (Adams 1972), are a= 80'- 850 for a flat spin, =720,730

for an intermediate spin, and =450 - 60° for a steep spin.

There are basic characteristics of spin motion common to all of the

spin modes defined auove:

S(1) The angle of attack remains greater than the stall angle

of attack ( STALL);
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(ii) the center-of-mass follows a helical path, with the net I
velocity being almost totally vertical and constant sink rate;

(iii) the aircraft attitude changes at a steady rate (of magni-

tude w), and the axis of rotation is almost totally vertical.

In the development of the equations for analyzing developed, or equilibrium,

spin, the above characteristics will b 'incorporated as dynamic'onstraints.

Other assumptions, such as constant speed (V), will be discussed later.

The visual cue for a spin is excessive and continuous yaw rate.

The fully-developed, or equilibrium, spin is often achieved after

only a few rotations. Once the spin is established, the trajectory is

essentially vertical. In this situation, equilibrium is a result of a

balance of the aerodynamic (decomposed into lift and drag), gravity and

the centrifugal forces (the latter arising from the helical motion).

The drag vector opposes the velocity, and so is largely vertical; hence,

the lift vector tends to lie in the horizontal plane, and the radius of

the helix, R, adjusts until the resultant centrifugal term, W2R, balances

the lift term. During an established spin, the presence of non-zero

sideslip, 6, is quite often prominent in the generation of the coupling

moments which maintain the equilibrium spin. These particular moments

are usually affected by the rudder setting.

When an aircraft enters a spin from a basically straight and level

flight condition, the center of gravity follows a path that initially

was horizontal, but changes to a vertical spiral. Such a significant

change in flight condition, caused basically by entry into a stall region,

is bound to produce at least transient oscillatory behavior in p,q,r, the

rotation rates about the vehicle roll, pitch and yaw axes, respectively.

-- -
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3
Generally, such oscillations dissipate before one or two spin revolutions

have occurred; however, in some instances, these oscillations may grow in

amplitude. Characteristic of such oscillatory spins is the large change

I of aircraft attitude with respect to the horizon as roll rate p oscillates

(Kerr(1956)). The oscillations may cause the motion to change from a spin

to a o5st- t gyration, in which rolling motion is prominent.

3 We have devoted the bulk of our spin analysis efforts in this report

to the study of spin behavior when the aircraft is in flat spin E<tua-

I tions. This is primarily because flat spins have tended to be the most

troublesome ones, in that recovery from them is usually very difficult

to achieve. This is because much of the spin equilibrium regime is

stable, which requires active control for recovery. Aircraft susceptible

to post-stall entry into flat spins tend to have such characteristics as

1 lengthened fuselage forebodies, increased relative distribution of mass

rin the fuselage, and wings with short span. The design ideal is that the

aircraft equilibrium be unstable in flat spin over as wide a control regime

as possible, so that recovery from flat spin is easy.

3.1.2 Nature and Characteristics of Stall

Stall is the condition of dramatic loss of lift due to a change in

the operating state of the aircraft. Stall entry is typically a longi-

tudinal phenomenon, in that application of elevator will cause angle-

of-attack to grow excessively. Lift is proportional to angle-of-attack

until a value for a is reached, cSTALL' at which flow separation around the

Iwings occurs. The wake becomes turbulent, lifting capacity is sharply

reduced, and the aircraft is said to have stalled. Stall, then, is a

major phenomenon of high- flight. Often, pre-stall buffeting or wing rock
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I
warn the pilot, though not always in time. Subsequent to stall, depending

on the state of the aircraft, there may be post-stall departure into spin,

roll departure, or autorotation; all of these are undesirable motions,

particularly spin, which can be an equilibrium state, structurally stable

over the available range of control values.

The pilot generally has to assume active control of the vehicle once

the aircraft has stalled, and there may be extreme conditions which only an

autopilot can deal with. In any event, one of the main goals of aircraft

and flight control system design is to extend the operational flight regime

as much as possible by avoiding stall situations, and to provide the

pilot with adequate warning when he is about to encounter stall.
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3.2 Spin Equations of Motion, Assumptions, Constraints

The equations of motion which adequately model spin behavior require

both the full set of coupled nonlinear terms and a data base for the

aerodynamic coefficients which is comprehensive enough to include regimes

5 in which spins occur. In the equations that follow, engine thrust and

gyroscopic terms are not included. The role of engine thrust in spin

entry and recovery dynamics will be studied in subsequent projects. Pre-

vious work (Grafton 1966, Lusby 1961) has shown these effects to be small;*

furthermore, the greatly reduced airflow along the longitudinal axis may

cause serious engine damage, erratic thrust behavior, and flameouts. Finally,

the variation of atmospheric density p with altitude h is neglected, so

that dynamic pressure q is a function only of airspeed V. The basic equa-

tions, then, are:

q + [-( C - - sine + r sin )sina

+(SC+ Icose cos - p sine Cos xsec6 (3.2.1)

= -C C- 2sine) sin6 + r]cosa

+( V Cy + Icossin )coso

[U + 2 cosecos.)in8 -]sint (3.2.2)

( )- (~~~~ -
" sin)cosacoso + ( V C + cosesin )sina

+ +( V C + acosecoso)sinacosa (3.2.3)

*However, thrust seems to play a prominent role in spin entry dynamics.
[" See Sec. 3.3.

-. .... . . . ."-... ..-----.-.-. --. 7" ........
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+ 1iz1  J

+ ~b ( + xZcl C (3.2.4)
xx ilz j L j

': I- - xz) - Pz (3..5

+ pr + [, - xrl2-p (3.2.6)
I_ ys m I - Ix  y

_I XZ i Pq- + )Ix z qrI xz x z
+ ( I ]/Z2bXz C + Cn 1 ] _ J  (3.2.6)

These equations are derived principally from Adams (1972), but some

The following kinematical relationships are needed to fully describe

the motion:

: q cost - r sing (3.2.7)

p + q tanesino + r tanecoso (3.2.8)

a c sinoseco + r cososec8 (3.2.9)

R = Vxcosn + Vysinn (3.2.10)

R; -V Isinn VIcosn (3.2.11)

Vz  (3.2.12)z

II
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where

3 V1 = V[cosz cos cos p cose + sincx(cosp sine sino - sinp coso)

u + sinca cosa(cos p sine cos + sin p sinf)] (3.2.13a)

v y = V[cosa cos sin p cose + sincL(sinp sine sin + cos p cosp)

- 3 + sinx cosa(sin p sine coso - cos p sinqf)] (3.2.13b)

v z V[-cosa cosa sine + sina case sino + sinci cosa cose cosc ] (3.2.13c)

I In Eqs. (3.2.1) to (3.2.6) the aerodynamic coefficients are expanded

as follows:

C= C X(CX1 B6 =) + Cx 6e (ota)6e (3.2.14a)

C= C y(a,816=0) + C Ye(u,W)e + C Ya(a,B)6a + C Yr(cz,a)6r

+ )C (cp + Cr(00~r (3.2.14b)

C= C Z(a, ~=O0) + CZ6(t,,)6e (3.2.14c)

Cz = C eaa,=0 + C z e(cis)6e + C 6 (aga)6sa + C z6 (a,6)6r

+() [cb ~C )p + C(at)] (3.2.14d)

JCm = CM(a,.,6= 0) + Cm6(ca)6e + Cm ()q (3.2. 14e)
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Cn  Cn(,B,6:O) + Cn1 e(ci,B)6e + Cna(cz,B)6a + Cn (a, )5r

nnre nT 6d n6r+(2-)[Cn( )p+ C )r](3.2.14f)
41 np P nr

The above system, Eqs. (3.2.1) - (3.2.12), allows a complete time his-

tory for general motion of the aircraft. Note that Eqs. (3.2.1)- (3.2.8)

are a self-contained sub-system, not requiring information from Eqs. (3.2.9)-

(3.2.12); the converse is not true.

We shall now digress a bit to discuss how the equilibrium system used

by BACTM is developed from the dynamic system of equations. By "equi-

librium" is meant dynamic equilibrium. That is, we are seeking all sets

of points (x,6) for which f(x,6)= 0. Here, the elements of the vector f

consist of theright-hand terms in Eqs. (3.2.1) - (3.2.8), for one system;

the elements of the vector x are (p,q,r,a,B,V,e,p), for that system; and

the elements of 6 are (6a,6e,6r). At f=0, of course, all time derivatives

of x are zero, so that p,q,r, etc., have fixed values. This is dynamic

equilibrium. There remains the very inortant issue of classifying the

equilibrium points. First, some definitions: A stable equiliorium point

is one in which motions originating at some point in the neighborhood of

the equilibrium point 4(R,;), ultimately return to y; an unstable equi-

librium point is one in which any motion beginning at a non-equilibrium

point near 2 will ultimately diverge from 2. All equilibria for linear

systems, = Fx+ G6, are either stable or unstable. For nonlinear systems,

such as we are dealing with here, motions not only may either converge or

diverge asymptotically, but also may develop into limit cycles. This is
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I
a motion in which the time solution x(6;t), also referred to as an orbit

or trajectory, returns at some time (t+T) to its value at t, where T is

fixed. Depending on its amplitude, frequency, and other issues (some of

them probably subjective), a limit cycle may or may not be considered a

*n stable motion. There are other points to emphasize, however. First,
U

limit cycles themselves are stable or unstable, in the same sense that

equilibrium points, or curves, are; that is, motions starting near a

stable limit cycle ultimately end on it, and conversely for unstable

limit cycles. Second, a point on a stable limit cycle is not an equi-

librium point, because xO.

Equilibrium points are classified typically by investigating the

first order term* in the power series (e.g., Taylor) expansion of f(x,6),

evaluated at y. By the nature of nonlinear systems, then, the validity

of the stability classification is restricted to those regions centered

on y where the zeroth and first order terms of the expansion of f are

almost equal to f itself. (This comment has particular relevance to limit

cycle motions.) Specifically, the eigenvalues of the Jacobian matrix, F or

af(x,W)/ax, evaluated at : , are used to classify the equilibrium

point. For the eighth-order dynamic system (3.2.1)- (3.2.8), F is 8x8,

and yields eight eigenvalues. If all of these have negative real parts

(any complex eigenvalue has a conjugate mate, as all coefficients in

the equation = Fx are real) at j, that equilibrium point is stable; if

one or more has a positive real part, the equilibrium is unstable. As

alluded to above, this classification, depending as it does only on linear

analysis, cannot provide quantitative information about limit cycles

*It can be proven that first order analysis is sufficient for accurate

classification of "nice" nonlinear functions if done in a region close
to the point about which the expansion is done.
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(we are developing for BACTM, however, a novel approach for quantitative

analysis of limit cycles, using continuation methods. This will be de-

scribed in more detail later). In a region where limit cycle behavior

exists, the "governing" equilibrium branch will be unstable, typically

possessing one very lightly danped complex pair of eigenvalues (i.e.,

real part close to zero, but positive); the others have negative real

parts. Thus, when the (linear) eigenanalysis shows a lightly damped

complex pair, all we can say is that limit cycle motion is expected in

the region. We cannot quantify the limit cycle (e.g., amplitude, period,

stable or unstable, etc.) without further.analysis. The equilibrium

point which indicates limit cycle motion is actually an unstable one,

and this is in fact true in a "local" sense (that is, in the region

about where the linear approximation to f is valid). Motions starting

near such a point diverge; however, once their amplitudes are large

enough so that nonlinear influences are greater, a limit cycle may

result. If this happens, the global motion is stable, and is the asymp-

totic limit of motions emanating near the locally unstable equilibrium

point. Such a limit cycle is a stable attractor, and we have seen many

examples of these (see Mehra et al., 1977). Unstable limit cycles do

play an important role as well, but their quantification is considerably

more difficult than that of stable limit cycles. Global bifurcations

deal with the annihilation of stable limit cycles by unstable ones, as

system parameters (e.g., control settings) change.

In summary, then, equilibrium points may be stable or unstable. For

a certain type of unstable point, the one with one unstable complex pair

.1
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I
of eigenvalues, limit cycle notion may result, but not locally. Motion

is locally divergent from all unstable points and locally convergent to

all stable points.

l We return now to the aircraft spin equilibrium system. In order

g to find the spin equilibrium points, two extra conditions are needed:

i) an equilibrium is specified a priori by the requirement

=0

1This result is derived from the equilibrium requirement for constant
1 angular velocity and steady helical motion.

ii) the spin characteristics are specified as dynamical constraints,

to be incorporated in the system Eqs. (3.2.1)- (3.2.12). These constraints

are:

h=h*, a specified constant; (3.2.15)

this decouples the ; equation and lets q= q (V) only.

W = zI (3.2.16)

where w represents the total angular velocity of the aircraft;

S(t*) = 0 (3.2.17)
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where t* is the time at which the equilibrium solution is made. This

relationship results in no loss of generality, because of the natural

decoupling of i from the basic dynamical system, Eqs. (3.2.1)- (3.2.8).

Finally,

V = RT - -I (3.2.18)

where T is the unit vector in the direction tangent to the trajectory, and

I is the locally vertical unit vector. This is the constraint for helical

motion. It leads to the relationships

v. =0 f
R + Vy (3.2.19)

In (3.2.19), VH is the magnitude of the horizontal component of velocity,

and is the heading rate. When constraints (3.2.15)- (3.2.17) are in-

corporated into the full dynamic system of equations, the system reduces

to a five-dimensional set of nonlinear algebraic equations for the

equilibrium points in the state space. Before presenting this equilibrium

system, a few consequences of incorporating the constraints will be de-

tailed.*

The requirement = 0 allows for the direct algebraic solution of V as

a function of , using Eq. (3.2.3). Specifically, V is the

solution of a quadratic equation. Condition (3.2.16) results in the

identities

*Later, we will show an eighth order spin equilibrium which was actually used
for the numerical solutions. This system was used because i is less con-
figuration-dependent and because the continuation algorithms developed for
BACTM (Ch. II) can efficiently handle large order systems.

!
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I0
e=0

p (3.2.20)
p = -w sinl6

q = w cose sing

r = w cose cos

Considering the last three of these identities, it is seen that a new

state variable, w, has been defined, replacing the set (p,q,r), for a net

reduction of two in the order of the system. Also recall that the time

rate of change of the Euler angles (wOF) is not an orthogonal set.

This is not true of the roll, pitch, and yaw rates (p,q,r), which are

orthogonal body axis components of the total aircraft angular velocity

vector, w. As vector components, ( ,6,) do add up to w also, but only in

special cases may be associated with yaw rate, 6 with pitch rate, and

so on. This means, as (3.2.20) shows, that all Euler angle rates but ',

may be zero, yet because of projections, all of (p,q,r) are nonzero.

The reader needing further amplification of this aspect of aircraft

kinematics is referred to an appropriate text covering kinematics, e.g.,

Goldstein (1950), and in particular, Etkin (1972).

The equilibrium system of equations is:

0 = = sinwcose + [-sina(FIC -C . sine + w cosecososina)

+ cosC(FiC z + 2 cosecos + w sinesine)]sece (3.2.21)

1
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0 =-sinb(FiCx - VC sine) + w cosecos]cosc

+ cosB(FiCy + I cosesinf) - [sin(F Cz + 
9
- cosecos) +w sine]sina1y V 1 z V

(3.2.22)

o)= = [. ( y-lx)W2 sinecosesino0 :(csecs,) 9 1- F8 - z

(1 + IlhYl)F 6 w2COS26sincos

+ b F4 (F5Ck + C)] (3.2.23)

0 :(-sine):9 r cosesinocos 8  Ix+

F9 8
+2F5I 1Iy-x

+ w2  ~- W-2 F sinecosesino

+ b F(C + F6 ) '3.2.24)
F2(Ct + 6Cn)]

0 = (cosesinol) = c F3 Cm +W2 [F7(cos2ecos20 - sin 2e)

0Iy sinecosecosol (3.2.25)

The system of Eqs. (3.2.17) -(3.2.21) may be compactly expressed as

f(x,6) = 0 (3.2.26)

where

x : (a,8,we,¢) (3.2.27)

In the above system, the following identities are introduced

1
I
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F P VS. F6 Ixz

F1  2m 6  1z
Fi- pV 2 S Iz

2  21 F7 _- 

i ly

F pV2S F8 = F5F6  (3.2.28)
21y

F pV2S F9 =1-F 8

4 21 z

Ixz 
10 2V

I 5 1 ixF
F11  2V

Note the presence of V in the Fi. This requires, then, the introduction of
the quadratic expression for V into the system, which is usually no prob-

lem for solution procedures which are iterative in nature, given a starting

point. When the system is solved for the equilibrium values ,

and V, then other quantities, such as R, may be found:

[sin (cos$ - cosssin )]

It is worthwhile also to monitor, at the equilibrium solution points,

the following parameters, which have been found by experimenters to be use-

ful in detecting departure into spin:

Directional Departure Parameter

I
C nDY : Cn Cosa - Ix C sina (3.2.29)

aDYN 0x a

Lateral Control Directional Parameter

+KC

LCDP =C -C C 6a K M6r (3.2.30)n L 9.a + rJ
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where K= 66a"

Both C and LCDP should be positive for stable motion. However,nBy

they were originally intended to compensate for the dynamic, or forced

oscillation, derivatives. Therefore, when more complete aero data

bases are utilized, parameters such as Cn and LCDP may lose some

significance. They are, in essence, a preliminary design tool. Other

derivatives such as Cn and Cm may be interesting, and it is certainly

of interest to verify that

> CSTALL*

Because of the improved methodology developed during the project,

it has become possible to use a somewhat more general set of dynamic

equations for the study of spin behavior. This set is an eighth order

system, and it has the advantage of flexibility and ease in terms of de-

riving the elements of the system Jacobian matrix analytically. This system

consists of Eq. (3.2.1)- (3.2.6) as well as the kinematic relations (3.2.7)

and (3.2.8), and has been coded directly. By reasonable choice of initial

conditions, the solution of this set either for time history trajectories

or for equilibrium surfaces will automatically incorporate the constraint

relationships (3.2.15)- (3.2.17).

Additionally, a second set of velocity state variables is used when

time history solutions are generated. This set uses the body-axis com-

pcnents of V, namely (u,v,w), as state variables instead of the set (V,a,a)

which is defined by Eqs. (3.2.1)- (3.2.3). The set (V,a,B) is the wind-

axis velocity state and the set (u,v,w) is the body-axis velocity state,

iI

. . . . .. - -iI
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whose dynamical relations are given by:

I u = -g sine + vr - wq + C (3.2.31)m

g cosesino + wp - ur + C (3.2.32)m

g wgcosecoso + uq - vp + S C (3.2.33)m

where C)x,  2 C z are the total aero force coefficients along the aircraft

x-, y- and z-axes. An auxiliary set of relations enables computation of

l variables of importance:

I a = tan- 1(w/u) (3.2.34)

sin-l(v/V) (3.2.35)

V: u2 + v2 +w2  (3.2.36)

The use of the body-axis set is disadvantageous in that the aero-

dynamic coefficients are functions of a and , so that (3.2.34) and (3.2.35)

must be carried along. However, with this set, and with the equation for

heading angle (also the yaw angle in a yaw-pitch-roll inertial-to-body

Euler transformation sequence)--Eq. (3.2.9)--several kinematic and dynamic

variables of interest in the force-moment equations may be generated

rather easily. Also, this set is "cleaner" in form than the wind-axis

set, as it avoids the transcendental terms in a and a which represent the

body-to-wind axis transformation.

Some more terms which are worth monitoring in the study of stall

and spin behavior include
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TURNS = to dt (3.2.37)

E =  mV2 + W.I. (3.2.38)

= mVO + I P + I qq + 1zr (3.2.39)x y

where

= (u6 + vv + ww)/V (3.2.40)

if the body-axis velocity set is used

W = Vpz + q2 + r2  (3.2.41)

VVERT = -u sine + (v sin, + w cos )cose, (3.2.42)

positive downward,

VNORTH = cosp[u cose + (v sin + w coso)sine]

- sin(v coso - w sin ) (3.2.43)

VEAST = sinp[u cose + (v sine + w cosf)sine]

+ cos P(v coso - w sine) (3.2.44)

h = h0  f VVERT dt (3.2.45)
0

XNORTH = NORTHo +ftf VNORTH dt (3.2.46)

0

YEAST = YEAST0 +ftf VEAST dt (3.2.47)

Es = Iv 2/(qSb) (3.2.48)

i v

iI
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where

II V = sin
2elx + (sin 2¢ly + cos 2 I z)COS 2e + I xzcos~sin 2e (3.2.49)

I (when Ixy = Iyz = 0)

DSPIN Xsi--DsIM----I;j]2] (3.2.50)

1E is a scalar quantity representing total vehicle kinetic energy

(assuming a purely rigid body); the first term is due to translational

(center of mass) motion, and the second represents the rotational contri-

bution. Here, I is the moment of inertia tensor, written as a square

3x3 matrix; thus, pre- and post-multiplication of I by the angular

velocicy vector w= (p,q,r) results in the scalar quantity (assuming that

the off-diagonal terms of I, Ixy, Ixz, and lyz , are zero)

2  
1yq

2 + r2  (3.2.51)

Note that the only sensible axis system for coordinatization of I is the

6ody-axis system, and thus w is also in this system for compatibility.

is merely the time rate of change of E, the kinetic energy. DSPIN

is a Euclidean metric which is an indicator of how far a given point

in the state space, x, is from a known (input) stable equilibrium spin

location, xSPIN' In (3.2.50), xi is a component of the state vector x,

say a, Xsi is the value of that component at a known spin equilibrium

condition, and n is the number of state elements in x. DSPIN, then, is

Ii

I r___ ____ _ _ _ _ _ _ _ _ _ _ _ ____

I
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intended to provide some indication of how far a particular point I
xe Rn is from a known spin equilibrium point, xS,

Equations (3.2.37)- (3.2.50) represent relations for quantities

which are of interest in investigating spin motion, as well as the quan-

tities defined by Eq. (3.2.29), (3.2.30) and Cm* Also, selected terms

from the basic dynamic set of equations are usually of interest.

3.2.1 Aircraft F Configuration; Representing Aero Data by Spline Functions

Because of the completeness and compactness of data which is relevant

to the study of spin conditions, aircraft Configuration B from Moore,

Anglin (1971) will be used first in this study. We shall henceforth call

this configuration aircraft F. Additionally, there are several sources

of aerodynamic data for the F-4 Series of aircraft, namely, Rutan (1970),

Adams (1972), Moore and Anglin (1971), Brady (1969); however, some extra

effort is required to coalesce and reduce these data to the form of air-

craft F, and so the F-4 Series will be investigated later. Moore, Anglin

(1971) use the F-4 data, but not for the study of equilibrium spins, so

no high-a data is supplied there. Data for Aircraft F are presented in

Tables I and II.

Aircraft F is a variable sweep fighter aircraft whose aerodynamic data

is somewhat equivalent to that of the F-111, although it must be emphasized

that values were modified, especially the C derivatives, to allow the simu-
n

lation results to readily produce "typical" spin motions.

It has been decided to model the aero data for aircraft F by using

cubic and bi-cubic splines. A cubic spline is a means of representing data

points by third order polynomials. The values of the four coefficients

f
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which specify the polynomials are determined by continuity and smoothness

conditions at the so-called "knots," which are typically but not neces-

sarily the data points themselves. Thus, the cubic polynomial between

I any two knots differs from that between the neighboring knots, but their

respective coefficients are selected so that, at their common knot, the

value itself and (for cubic splines) the value of the first two deriva-

tives match. The bi-cubic spline is conceptually similar to the cubic

spline, except that it is a cubic polynomial in two variables, and not

Ione. See Eq. (3.2.52). We have developed analytic functions in (cX,B)

for the coefficients by using cubic and bi-cubic splines, for the follow-

ing reasons:

(i) splines assure smoothness, especially at the boundaries (knots);

(ii) The numerical algorithm employed by BACTM to generate the equi-

Ilibrium surfaces requires the partial derivatives of the right
1hand side of Eqs. (3.2.1)- (3.2.6) with respect to the state

and control variables--i.e., it is required to generate the

Imatrix*

Since (a,6)ex, expressions such as will be required.

The stability analysis in the neighborhood of the equilibrium

surfaces also requires this matrix.

(iii) The data need not be supplied over uniform increments. This

has the potential for saving much core on the computer, since

the smoother portions of the data don't require as many points

to adequately define the function.

*The coefficients are linear in the control variables 6 so this aspect is
straightforward, since the partials are the control stability derivatives.[
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TABLE I

Aircraft F:

Weight, N (Ib) ........................................ 222 410 (50000)

Wing Area, m2  (ft2) ................................... 48.77 (525.0)

Wing span, m (ft) ..................................... 19.20 (63.0)

Mean aerodynamic chord, m (ft) ........................ 2.76 (9.04)

Ix , kg-m 2  (slug-ft2) .................................. 67790 (50000)

Iy , kg-m 2  (slug-ft 2) .................................. 427 348 (315200)

Iz, kg-m
2  (slug-ft 2) .................................. 476564 (351 500)

Ixz, kg-m 2  (slug-ft2) ................................. 0 (0)

Maximum control-surface deflections:

6e,  deg .......................................... 10, -25

6a , deg .......................................... ±15

6r' deg .......................................... ±30

ALI



69

I
TABLE II Aerodynamic Characteristics, Aircraft F
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TABLE 11, concluded
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The general form of a bi-cubic spline is

44
S(OLB) = Y I C ij[a-A( )]i1[C B( )1J (3.2.52)

1 i=1 j=1

Swhere A(9 ) and B(za) are the values for a and $, respectively, at the

lower left corner of the rectangle of values for a and 3 which contains

3 the input set (a, ). S is the value of the particular coefficient at the

input set (a,a). Library routines (IMSL) are used to generate the C

Iand to compute S and its partials.

Use of splines may appear to be introducing an overly-sophisticated

approach for a data base as relatively simple as the aircraft F model, but

when the more complex data bases such as that for the F-4 are added, the

value of the spline approximations should be more appreciated. To assure

a good spline fit, the location of the junction points, or knots, is an

important factor. When this and similar considerations are efficiently

dealt with, the method of splines becomes an efficient modeling tool. In

our applications, the knots are placed at each data point. More back-

ground on the theory and uses of splines may be found in Ahlberg, Nilson

and Walsh (1967).

Splines by their nature allow for accurate modeling of the partial

derivatives of the dependent variable (aerodynamic coefficients) with

respect to the independent variable(s) (ct and/or 6). This fact is impor-

tant in the application here, because these partials are required in

)rder to evaluate the equilibrium and bifurcation surfaces; and the accuracy

mvi'r values may often be critical to efficiently starting up the

l Immmmm n llmmm mnmnnn
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I
numerical solution. Whereas curves which result from a less rigorous

patching-together of polynomials may well experience severe discontinuity

problems for their derivatives at the boundary points, spline-produced

curves by their nature (i.e., the constraint that the second derivatives

be equal at each knot which "shares" two splines) have no such problems.

The splines used to model aircraft F's aerodynamic data are "natural"

cubic (or bi-cubic) splines*, and the knots are specified to be located

at each data point. Of the 22 coefficients which are used by aircraft F,

all but four are functions of a and are thus modeled by the one-dimen-

sional cubic splines. Cy, Cn, CV and Cm only are functions both of a and

P and are modeled by bi-cubic splines. Cubic spline plots are shown in

Figs. 3.1 to 3.6. These are plots of each of the 18 a-dependent coeffi-

cients, and their respective partials with respect to a (in degrees).

The plot of the basic function is the line containing the x's, the latter

representing the data points (hence, also the knots) obtained from Moore,

Anglin (1971). Both the coefficients and their partials with respect to

a are computed and plotted in dimensionless units. The units for a (abscissa)

are degrees. The derivative with respect to a is plotted as a clean, solid

line. Notice how smooth the derivative curves are. The large change in

shape of most of the curves beginning in the range a=-350 to 500 (.69 to .91

radians) is due principally to the loss of rudder control effectiveness for

a> 500. See, in particular, the plots of the lateral mode coefficients

appearing "n Figs. 3.3 to 3.6.

The bi-cubic spline, two-dimensional, plots of a representative

function of both a and r6, Cm(a,8), are presented in Figs. 3.7 and 3.8.

*A natural cubic spline is one whose second derivatives are zero at the

end points.
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Fig. 3.7 shows Cm and its a-derivative, Cm both of which are in dimen-

sionless units, plotted against sideslip angle e, in degrees. The two

plots shown in Fig. 3.7 are for two different values of angle-of-attack

a, 65' and 32.50 respectively. The latter value for a represents an in-

I terpolation on the data. By rotating the projection plane depicted in

Fig. 3.7 by 90 , one obtains plots of C M(a,) and its c-derivative, Cm

versus a, shown in Fig. 3.8 . The units are as in Fig. 3.7 . The two

1 values of B for which the Fig. 3.8 plots are made, ±250 , are the interpola-

tion values for 6.

A final note on the use of spline function approximations by BACTM.

Because the spline package had already been implemented to represent the

aero data, it was also decided to use splines, and the same routines,

Iin evaluating numerical derivative, e.g., to generate elements of

[af/ax] which are difficult to obtain analytically. This duality of

function adds to the efficiency of BACTM. See Section 2.1.2 for a dis-

cussion of the numerical differentiation algorithm.

i '



74 1

3.3 Entry into Spin; Explanation of Equilibrium Surface Plots

Experience shows that a very complete set of aerodynamics is required

to represent properly the extremely complex aircraft motions which arise

during stall/spin flight conditions. In this section, we shall explore

the spin entry behavior of aircraft F. This model does not possess all of

the desirable features for undertaking a thorough, realistic study of spin

behavior. However, it has been an excellent model in providing a small

yet adequate basis about which to construct the BACTM Spin Analysis system;

and for providing much insight into the nature of developed spin motion in

particular.

The results to be shown in this section, however, will reveal that

careful study of the equilibrium surfaces generated by BACTM is required

in order to understand the subtleties of nonlinear, high-a aircraft

motion. Interpretation of equilibrium surfaces is a case in point. It

can be rigorously demonstrated that motions originating in the vicinity

of a "stable" branch (such branches are labeled with an "S" in the figures)

will ultimately arrive at a point on that branch, thereby achieving a

condition of dynamic equilibrium (i.e., = 0 ). See Section 3.2 and Chapter II

for further discussion. Chapter II contains a bibliography referencing detailed

proofs. The only problem, then, for regions dominated by a stable branch

is determining quantitatively the neighborhood from which all motions lead j
to that branch (this neighborhood is called a "domain of attraction").

Very often, a boundary to the domain of attraction is a "simple" un- B
stable branch, e.g., one in which there is one positive real root--this I

I
F
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branch is designated by a "U". In Fig. 3.9 we can see an example of

5 this situation. The point A in this figure is centered on a stable branch

in the equilibrium flat spin region. This branch is bordered above and

U below by a U-branch. Thus, motions initiated with a contrul setting close

to that of point A, and with initial conditions inside the two U-branches,

will return to the S-branch. Units for this and subsequent figures are degrees.

Before proceeding further, we will now explain some of the details

of Fig. 3.9, which is a typical plot of an equilibrium surface. The

branches shown represent loci of points for which f(x,6)=0, generated by

holding two of the elements of 6 at given values, and varying the third

(see Chapter II). The letters on these branches provide local stability

information, as follows: for the nth order system x=f(x,6), the local

stability information is obtained from the eigenvalues of the square

Imatrix [af/ax], which is part of the first order (linear) term in the

polynomial expansion of f. This matrix is of size nxn, and always yields

n eigenvalues, which may either be real or in complex pairs (since

[af/ax] has real elements). If all n of the eigenvalues have negative

real parts, the equilibrium point is a stable one, designated by S. Any

other situation results in an equilibrium point which is locally unstable.

Several unstable cases are now outlined: if there are (n-i) eigenvalues

with negative real parts, and the remaining one is positive (this one is

fnecessarily a real eigenvalue as complex eigenvalues come in pairs), the

point is designated by a U; if (n-2) have negative real parts and a com-

plex pair has a positive real part, the point is designated by L. How-

ever, if there are (n-2) "stable" eigenvalues and two real, positive ones,

I then the point has two simple U's, or isdesignated by the symbol A, as
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seen in the table at the top of Fig. 3.9. Except for the one, unique

stable case (S), the table gives symbolic correspondences for all com-

binations of unstable eigenvalues; that is, eigenvalues with positive

real parts.

To summarize to this point, when U-branches have been found near

S-branches, they typically outline much of the domain of attraction to

that stable branch.

As for all other (unstable) branches, there are two major points of

interest with regards to aircraft F equilibrium results:

1) The stability analysis is local, and based only on first order,

or linear, information. This means that at a U-branch, say the one including

point E in Fig. 3.9, the motion will diverge locally; in fact, for any

unstable point, any point but an S-point, the motion diverges locally.

But we can say more regarding the point E case: if the motion starts on

the S-branch side of the U-branch, it will ultimately come to equilibrium

on the S-branch. This is a global result however, and is obtained not

from the information provided by [af/@x] at point E, but from a more global

knowledge of the equilibrium surface--that is, we know that the S-branch

"attractor" exists. If the motion starts on the other side* of the U-

branch, it is unclear from the equilibrium surface plot what will ultimately

happen. The divergence feature applies only in a local sense and

guarantees only that there will be no equilibrium near the U-branch.

Globally, the motion is attracted elsewhere from the U-branch, either to

a distant S-branch (not shown), or to a limit cycle, perhaps the one

governed by the L-branch above point E in Fig. 3.9a; or finally, to an

*Strictly speaking, motions originating exactly on the U-branch or any
other unstable branch, will remain there; however, the smallest pertur-
bation will induce divergent behavior, which is what happens in the real
world.

I1
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I
essentially erratic motion not characterized as either a stable equi-

I librium ( =0) or a limit cycle (x(t+T)= x(T), O<T<-). Thus, local

instability is not necessarily global instability.

2) L-branches are of particular interest, because they are very

prevalent in high-t flight regimes, and particularly so in the spin

entry region depicted in Fig. 3.9 (the lower branch which includes points

I B, C, D, E). As defined above, the L-branches define unstable equilibrium

points at which [ f/Dx], the Jacobian matrix, has (n-2) "stable" eigen-

values and one unstable complex pair. Locally, then, this indicates

1oscillatory divergence. Globally, however, it is quite possible that

this 'ivergence is in actuality growth to a stable limit cycle (hence,

I the L-symbol designation). The existence and stability of limit cycles

is not explicitly obtained from the equilibrium surfaces (we are currently

developing an algorithm to do this analysis), but stable limit cycles in

j our experience are always associated with an L-branch. In a sense, then,

stable limit cycles may be regarded as stable equilibria, unless ampli-

Itude variations are excessive. At any rate, there are domains of attrac-

tion to stable limit cycles, although their boundaries are not as easily

computed as are those for the proper equilibrium points (S-branches).

Also, there are known to exist unstable limit cycles. In analogy to the

U-branches, if a motion could begin exactly on an unstable limit cycle,

I and be free of random disturbances, it would remain on this cycle. Typically,

of course, the motion readily diverges, usually to a stable limit cycle.

Ii Unstable limit cycles are very difficult to isolate, and there exists no

[ known algorithm of sufficient generality which can compute their location.

They do exist however, and, as the continuation parameter (6r in Fig. 3.9)

I-- --!-T*-..'- ---.--- , ---.-
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changes, are capable of annihilating a stable limit cycle. This phenomenon

is called a global bifurcation, and may explain the limit point below

point B in Fig. 3.9a. Here, as one decreases 6r from point D, the equi-

librium curves tell us to expect a Hopf bifurcation (S-to-L transition

on the branch) to a limit cycle. Such limit cycles are typically stable,

at least when in the region close to the S branch, but again, this in-

formation cannot be obtained from Fig. 3.9. As 6r decreases, however,

this limit cycle is annihilated; we cannot indicate for sure exactly

where (although the figure indicates approximately -210, the limit cycle

motion is not a local motion; and the limit cycle may be annihilated

at a very different value, if at all), but, given that this occurs, it

is quite likely that the motion will be attracted to a stable limit cycle

governed by the segment of the equilibrium branch including point B. This

hypothetical control sequence outlines how a relatively "clean" rolling

motion at pointD (6a=150 in this example, recall) is corrupted into

buffeting and oscillatory motion which conceivably, as 6r is decreased

further, undergoes a jump to oscillatory, steep spin conditions (point B).

From analysis of time history results, discussed in more detail later,

there is a strongly stable--i.e., possessing a large domain of attraction--

limit cycle in the vicinity of point B. This situation precludes transi-

tion from steep spin to the flat spin equilibrium at point A, using 6r

alone.

Summarizing unstable branches, then, the major point is that in a

local sense all motions diverge from them; however, limit cycles typically

exist about a subset of these, the L-branches, and these themselves may

be stable (attractors) or unstable. When a stable limit cycle exists,
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it is usually centered on the L-branch; however, the motion will never

i decay to the L-branch itself. In spite of this, it is often convenient

to consider the stable limit cycle as an equilibrium condition, which may

be disrupted as a neighboring unstable limit cycle converges upon it,

I under the influence of changing control parameters.

A final note on limit cycles: they are a distinctly nonlinear phe-

I nomenon, lacking many properties of the linear oscillator. In the latter,

an incremental change in initial conditions results in an incrementally

different, yet stable, orbit. Such a change applied in a limit cycle

I renion will only produce a temporary perturbation, followed by decay to

the original limit cycle. That is, in a given subspace, there are only
a countable number of possible limit cycles, while a continuum of ampli-

*tudes is possible for the linear oscillator.

Returning to the aircraft F spin entry case, Fig. 3.9 is a repre-

sentative situation (the insensitivity to 6e of the equilibrium surfaces

in this flight regime will be indicated later; thus, 6e =0' is selected),

in that the flat, equilibrium spin region, the upper branch in Fig. 3.9a,

has a relatively small stable equilibrium region. Further, the steep and

intermediate spin regions, the upper part of the lower branch, as well as

most of the other non-equilibrium regions, are characterized by oscilla-

tory behavior, with limit cycle motion quite likely. As stated above,

several of the limit cycle regions exert strong attraction on neighboring

motions, making transition to flat spin very difficult. At any rate, our

experience with aircraft F indicates that oscillatory motions at inter-

F mediate angles of attack (300 5 a s 650) is a general feature for any control

I "I
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setting; this observation consequently adds to our desire to study in

detail the behavior and stability of limit cycle motion in general, and

the stall/post-stall/spin entry flight regime in particular, because

of its oscillatory character. A more useful study of spin entry would

involve using the F-4 model, which is more realistic and representative

in this flight regime.

In addition to the above situation, Bihrle (1976) has noted (and it

is verified here) that ensuing high- motion is extremely sensitive both

to control sequencing and to relatively small variations in the initial

conditions. Results presented here provide the basis for the above

observations and are typical of systems with bifurcations.

In the following discussion, we have concentrated on right pro-spin

motions; that is, yaw rate (r) is positive, due to negative rudder (6r)

deflection, and aileron (6a) is positive. For convenience, then, we shall

define

SPIN 9 (6a,6e,6r) = (15,-21,-25) degrees

Because of nonlinear dynamics, this set of controls corresponds to more than

one equilibrium point. However, associated with 6SPIN is a stable, de-

veloped flat spin equilibrium state for aircraft F,

-SPIN 4 (p,q,r,a, ,V,e,O)

= (30,-4.,100.,73.5,-3.,443,-16.6,-2.29)

The units are degrees and feet per second. These quantities will be used

for reference in the following sections.

Finally, it should be noted that many of the equilibrium surfaces

presented in this chapter may not contain all of the possible equilibrium

If(
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I
branches for the given control region. This is not necessarily a minor

S detail, because some of the branches not shown may possibly represent

stable attractors for certain limit cycle motions.

13.3.1 High-oL Motions to Stall, Aircraft F

Fig. 3.10 shows equilibrium surfaces in the (r,c,p)-6e plane for

aircraft F, centered on the trim state with neutral controls. As will be

the case unless otherwise specified, velocity (V) is fixed at 600 fps, and

gravity is assumed negligible (i.e., the non-spin set of dynamic equations

is used). Note that there are regions (6e>0) where five equilibrium

solutions exist, and three of these are stable. As 6e goes negative,

pitch-up occurs, signified by the growing values in a. From 6e = -15° the

Istable branch changes into a limit cycle branch; this signifies the onset

of wing rock behavior and pre-stall buffeting. Note in particular that1

on the roll-rate plot, there is a region in 6e >0 for which no solutions

7are shown. At the boundary points to this region, a has reached its

minimum value of -100, and no aerodata were available below this value.

Fig. 3.11a shows a time history plot in which V is free to vary and 6e is

increased from 0' to -9', then -17', then -200. Note that when 6e is

-17' and -200, there is evidence of large longitudinal oscillations, but

little wing rock motion. Fig. 3.11b shows a different 6e time sequence

than 3.11a, with velocity allowed to vary, and basically similar results.

If velocity is kept constant, buffeting and wing rock activity are very

prominent (Fig. 3.11c) as will be shown in Sec. 3.3.3, where Figs. 3.10

I and 3.11 are discussed further.

We consider now a maneuver in which both heading change and high-g

pullup is accomplished by pulling the stick back sharply (high negative 6e),

I
Jr
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and then over (high aileron). The 6e maneuver can be traced in Figure 3.10,

and Figure 3.12 shows the 6a direction from Point A in Figure 3.10. It is

seen in Figure 3.12 that, for 6e = -l1', beyond 6a = 150 there is a jump,

or a Hopf Bifurcation, to a limit cycle with high values of (r,.,p).

The time history presented in Figure 3.13 confirms these conclusions,

although the transition to post-stall divergence occurring at 30 sec. is

aided by introducing negative 5r as well. Note that the presence of nonzero

6r causes the initiation of spin-like behavior in the post-stall motions.

The DSPIN parameter, a normalized metric for II(x,6) - (xSPIN,0SPIN)1 2 ,

shows a return to spin conditions. The oscillatory nature of the developing

spin is typical of aircraft F behavior in transitioning from trim to high-a

flight regimes.

The equilibrium surfaces in Fig. 3.14 show the rudder effect on the

type of equilibrium condition which produces aircraft behavior similar to

that of the maneuver discussed above. In this instance, 6e =-20" and

6a= 0, while 6r varies. The segment of the L-branch (limit cycle beha-

vior expected) near (p,r)=0, 6r= 00, actually exhibits very mild unstable

growth to oscillatory behavior (very large characteristic or response time)

when the corresponding time history run is made (figure not shown); but,

as 6r moves from 0' to negative values, the response quickens greatly, and

the oscillations grow. A similar effect is noted in the trajectories of

Fig. 3.13.

3.3.2 Non-Spin Equilibrium Surfaces (Aircraft F)

As above, these results were generated from the non-spin set of

dynamic equations, which assume zero gravity and constant velocity (V).

Except where stated otherwise, V is assumed to be 600 fps. It turns out,

- ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ MMd .--.. O.---.-M----.--------"-
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at least for aircraft F, that the non-spin set can also be used in the

soin regime without destroying essential features. This represents a

significant result for first-cut analysis; the numerical results, however,

do differ, since gravity does play a role in spin behavior. However,

5gravity has negligible influence on equilibrium behavior in non-spin,
high- regimes. Moreover, steady state values for a and 0 do not exist

f in the high-a regimes. Hacker and Oprisiu (1974) show that the effects

of gravity in roll coupling may be taken into account by a perturbation

analysis.

The projections of the equilibrium manifold on different planes in

the state and control space are shown in Figures 3.10, 3.12, 3.14, 3.151
and 3.16. In each of these runs, the control is extended from x=0 over

as much of its allowable range as possible, with the remaining two controls

fixed at zero. The elevator case has been discussed in Section 3.3.1.

As will be seen, the rudder introduces the most dramatic changes in equilibrium

conditions in this region (Figures 3.14 and 3.15). In fact, the aileron

behaves as an almost purely linear control over its entire range for

6e= 6r= 00, and all equilibria are stable (Figure 3.16). Note how roll

rate (p) is the only variable reasonably sensitive to 6a changes; thus,

there is also decoupling. But the rudder, in this as well as most otherI,

aircraft F flight regimes, exhibits far different characteristics. This

is further exemplified by the time history shown in Figure 3.17. This

figurL shows the clear growth to a high-amplitude liFit cycle as 6r steps

in 100 increments from 00 to -400, with 6a 6e= 00 . Clearly, the effect

of rudder is nonlinear in this region, and there is a high degree of

if
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coupling, as both Figure 3.15 and 3.17 show.

From Point A in Figure 3.15, Sr -6.4', a surface is qenerated along

the 6e direction, and the results are shown in Figure 3.18.* This figure

represents a parallel slice of the surface only 6.4- remo-,ed alonq the

6r direction from the projection shown in Figure 3.10, yet it is evident

how dramatic the difference is, both qualitatively and quantitatively.

A third section of the equilibrium surface, for 6r= -25 , is presented in

Figure 3.19, and represents the projection alona 6e centered on P.)int B

in Figure 3.15. Again, there is a considerable difference in the shape

of the surface. Note further that inspecting the p-plot alone may cause

one to suspect a possible bifurcation point; that is, the point where the

branches intersect, at 6e -4'. This is not the case, however, because
I

there is no such overlap for the (ct,r) curves.

From Point C in Figure 3.18, the 6e=O0 point, an orthogonal pro-/
jection is generated along the third control direction, 6a, and Figure 3.20

shows the results. For the (6e,6r)-values given, i.e., (0,-6,40), the

6a= 00 point is a precariously stable one. Only small variations are

needed to cause either a jump (6a < 0) or development of an unstable or

limit cycle conditions (6a>O).

Returning to Figure 3.16, for which r = O, some other projections

of the equilibrium surface are compared in Figures 3.21 and 3.22. In

Figure 3.21, with the same controls as Figure 3.20, i.e., 6r=-6.4',

*In this figure, and in others where it appears, an asterisk indicates

that two pairs of complex eigenvalues of [ f/ x] have positive real
parts--an LL-condition.
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6e=0 0 , another branch of the equilibrium surface is shown. Aileron has now

lost its linear influence here, and there is significant coupling as well as

sharp lack of symmetry in p. Figure 3.22, for which 6r=-250 , shows very

similar curves as does Figure 3.16, for which 6r=O; however, the equili-

brium values have increased, and more significantly, roll rate is almost

totally insensitive to 6a commands. The aircraft is in an autorotational

state in roll. Figure 3.23 is a case similar to Figure 3.22, i.e., 6r=-25',

except that now 6e= 10.30 (pitch down). It can be seen that higher equi-

librium values ensue for this Se, with somewhat less stability. (Only the

r-6a plot is shown since others are quite similar).

A further effect of the rudder can be seen by comparing Figure 3.12

with Figure 3.24. In both of these figures, 6e=-110 and 6a is the inde-

pendent variable. For 6r= 13' in Figure 3.24, there are no stable regions

on the branch and there is no symmetry. Both of these results are expected.

Elevator influence on the rudder controllability may be seen by comparing

Figure 3.25 (6a= 15', 6e =0') with Figure 3.26 (6a= 150 , 6e=7.30 ) and

Figure 3.27 (6a = 15° , 6e= -11'). These surfaces again give evidence of

the richness of nonlinearities and hysteresis-type behavior, with several

different kinds of equilibria over the control regime. The aileron effect

on rudder may also be noted/by comparing Figure 3.25, for which 6e= 00 and

6a= 150, with Figure 3.15, for which 6e=00 and 6a=0*. There is some

change, although not to the degree shown by the elevator, revealed further by

a comparison of Figure 3.26 (6e= 7.30) with Figure 3.25 (6e= 00) especially

in a and p. To say that 6r has nonlinear influence on p is an understate-

ment, after inspecting Figure 3.26. Figure 3.27, where 6e=-110 andr



86

B
6a= 150, is most unusual because the curves close upon themselves as

rudder is varied. The geometry is more evident by comparing Figure 3.27

with Figure 3.28. In the latter, 6r= 0', 6a= 150 and 6e varies, so that

it is "orthogonal" to Figure 3.27. The line E-E' represents the plane

depicted by Figure 3.27; conversely, the line D-D' in Figure 3.27 is in

the plane depicted by Figure 3.28.

The equilibrium surfaces presented in this section were shown to

provide a feel for the great variety of behavior which is possible in

these high-a regimes. One can begin to understand, with particular ref-

erence to the time history results shown in Fig. 3.29, and its relevant

equilibrium surfaces shown in Figs. 3.24 and 3.26, that in certain regions

the smallest change in starting conditions can result in widely divergent

results.

3.3.3 Wing Rock Motions

Wing rock has been mentioned briefly in discussing the aircraft F

time history presented in Figure 3.11, Section 3.3.1. This particular

phenomenon arises as the result of developing instability of airflow

over the wings, a consequence of a approaching its stall value. The

main feature of wing rock is pronounced roll oscillations whose ampli-

tude increases at least through stall, and which usually couple into

yaw and pitch oscillations. The coupling effects are due to the high-a

nature of the motion. In fact, the rolling effects so prominent in wing

rock are the result primarily of the elevator control actions. This basic

longitudinal-lateral coupling is a main feature of high-a dynamics.

Figure 3.10 demonstrates this coupling of 6e deflections into the lateral

dynamics (p,r), and should be referred to in examining the results shown

in Figure 3.11.

_ _ _ _ _ _ _ _ _ I W
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Figure 3.11a shows a pre-stall buffeting which has only traces of

lateral oscillation. Aileron and rudder are fixed in the neutral position

for Figure 3.11, and the initial state is in trim. As can be seen, velocity

is allowed to vary in 3.11a and 3.11b--the aircraft is effectively in a free-fall

state--and this causes damping in the more prominent longitudinal oscilla-

tions. In Figure 3.11b, the damping is enhanced by changing the elevator

control sequence. Here, 6a is set and held at -15° after 20 seconds.

However, if a thrust schedule is introduced which maintains V constant,

I the 6e control sequence which was used in Figure 3.11a produces very dif-

J ferent results, as can be seen in Figure 3.11c. In this figure, the roll

rate oscillations become very severe, and they induce strong pitch oscillations

as well. This pronounced limit cycle behavior is predicted by Figure 3.10,

which was generated assuming constant velocity.

1 3.3.4 Post-Stall Gyrations

I It is seen from inspection of the global equilibrium surfaces (e.g.,

Figure 3.9), which show both spin and non-spin regimes, that there is a

Ibasic barrier between these two regimes. This is due physically, in part,

to the great changes which occur in the state of the vehicle as it under-

rgoes transition from trim to spin conditions. The velocity vector changes

approximately 900, from roughly horizontal to vertical (and down); angle-

of-attack similarly undergoes very large changes. Time history runs to

be shown (Section 3.3.5 and 3.4) indicate that if the initial conditions are

close to either those of stable, developed flat spin or of trim--and the

Icontrols are set to values representative of these two conditions--then
the ensuing motions will stay in these regions and are stable. The spin

I
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motion shows a well-developed spiral, with constant vertical velocity.

pitch, roll and angle-of-attack (for an aircraft in "flat" spin, the equi- V
librium pitch angle magnitude is typically no larger than about 150; thus,

the aircraft is spiraling down "on its belly" with substantial yaw rate). But

as Fig. 3.9 shows, if the controls move from trim (Point D) towards spin set-

tings (Point A), then the motions indicative of stable, developed flat spin may

not result since limit cycle regimes with large domains of attraction exist

around Point B. Physically, it is known that once a exceeds its stall value,

the aircraft becomes subject to violent oscillatory motions indicative of

the loss-of-lift condition attendant with flow separation at high-a.

These motions are called post-stall gyrations, and if there is any kind

of equilibrium associated with them, it is most certainly not a stable

equilibrium point. Once the controls move to values where high-= non-

linearities predominate, Hopf Bifurcations are seen to occur and only limit

cycle equilibria exist. And, as stated earlier, to move from a limit

cycle solution to a stable equilibrium point typically requires special

sequencing of control changes. At least this is the case with the air-

craft F model as defined and described in this report. It is easy to

sequence the controls so that aircraft F enters an inadvertent spin-like

condition; however, this spin is usually not the smooth, flat spin located

at Point A in Figure 3.9. The entered spin is predominantly oscillatory,

and a steep or intermediate spin which corresponds to a location not on an

equilibrium surface since they are all unstable in this region, but one evolv-

ing from the intermediate region of the post-stall gyration governed by limit

cycle (L) branches. This region is basically located between the spin and non-spin
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regions and is featured by a family of limit cycles. It is not clear

whether these limit cycles should be designated as "spin motions" or

high- post-stall gyrations, as they cover a broad range of a values (see Fig. 3.9b).

A spin entry run is presented in Figure 3.29. In this run, the

3 controls were initially at trim; then Se was set to -100 at 20 sec, 6r to

-290 at 40 seconds and 6a to 150 at t= 45 seconds. The results are consistent

I with what has been discussed above. The pitch-up action, pulling back

on the stick,causes stall; thereupon lateral control inputs trigger the

Igyrational limit cycle behavior.
1 A similar run is shown in Figure 3.30 . Here, the trajectory begins

with trim conditions, but 6a is stepped to 15' and 6e to -110, and held

(rudder remains momentarily at 00). The initial conditions correspond to

the S-segment of the equilibrium surface shown in Figure 3.27. As 6r is

then varied in steps to 140, this induces the oscillatory behavior shown

in Figure 3.30. The mean value of a indicates that an intermediate spin

has been achieved (F is also high, with j very small, proportionally). A

spiral of sorts has most likely developed, as the number of turns (the

plot variable TURNS) is increasing at a steady rate (small oscillations

superimposed), and XNORTH and YEAST are approaching a steady-state mean

value, with oscillation. Finally, a rough comparison of mean values of

r and w indicates that most of the angular motion is in yaw.

3.3.5 Spin Equilibrium Surfaces

A more complete study of spin equilibrium surfaces will be given in

Sec. 3.4, so many of the relevant equilibrium surfaces will be shown there.

IM
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The figures presented in this section have the feature that they were

generated using the full eighth-order spin dynamic system, in which gravity

effects are included (pitch-roll coupling) and velocity is allowed to vary.

Figure 3.31 shows the r and a vs. 6a surfaces for a left pro-spin control

setting, 6e= 00, 6r=28.3' (the combination 6a<0 0 and fr>0 0 produces nega-

tive yaw rate). The shape of these curves is seen to be quite similar to thE

surface generated in the right pro-spin control region (see Figure 3.34).

Later, when the non-spin system is used to qenerate the spin equilibrium

surfaces, it will be seen that this shape persists, although the numerical

results differ. Figure 3.32 shows that the absolute variation of V is small

(about 6%), so that there is justification in assuming V constant. A surface

projected onto the r-axis is presented in Figure 3.33, in which 6r is the in-

dependent control and 6a=-150 , 6e =0' (left pro-spin controls). Noting

again the common shape vis-a-vis Figure 3.31, the 6a plot, and the fact

that the right pro-spin control region possesses the same type of mani-

fold, the right and left pro-spin manifolds are presented over the 6a-6r

plane as shown in Figure 3.34. Manifold A represents the right pro-spin

manifold (surface) and Manifold B represents the left pro-spin manifold. Non-spin

equilibrium surfaces are not shown in this figure; they would be centered

about the origin and would not be in contact with either spin manifold.

While aircraft F possesses symmetry to the extent displayed by the

presence of two spin manifolds of similar shape, it will be noted that the

left oro-spin branches presented in this section do not possess stable segments,

whereas the right pro-spin branches, shown in Sec. 3.4, do. This is a

reflection of the asymmetry of the aerodynamic data which is used by the model.
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3.3.6 Spin Entry Time Histories

3 Given that a stable, developed spin equilibrium manifold exists (for

right pro-spin controls), the problem of reaching this manifold from

non-spin flight conditions remains to be considered. As discussed earlier,

there exists a large intermediate region between the clearly-defined spin

region and the non-spin region. It corresponds to the flight regime which

is often categorized "post-stall gyrations." The aircraft motion in

this regime sometimes appears chaotic, with large oscillations of often-

irregular frequency but is mostly of a limit cycle type. We will charac-

terize this region as a limit cycle region based on such results as pre-

sented in Figure 3.9. It effectively acts as a barrier to a sudden jump

from trim to spin conditions or vice versa. The time histories presented

in this section show this behavior, and they further indicate that a large

segment of this intermediate, limit cycle region is characterized by

motions normally designated as oscillatory spin. Furthermore, it is

usually steep (a 55) or intermediate (a = 70) in nature, based on the

mean value of angle-of-attack.

Figure 3.35 presents a case in which the controls are moved from neutral

to 6SPIN at t=2 seconds. (The initial flight condition is trim. 6SPIN

is defined at the beginning of Sec. 3.3.) If the spin manifolds were as

simple, relatively, as those of the roll departure region, say, then one would

expect to see entry into developed spin. This does not happen, however. There

is clearly a post-stall condition, but yaw rate does not reach the required level

(about 100*/sec), and generally the energy interchange maintains a somewhat chaotic

[

I' -
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post-stall gyration. In this run, velocity was allowed to vary. If, however,

V is fixed to the value corresponding to the stable segment of the equilibrium

spin manifold for the control set 6SPIN (V = 443 fps), then the rerun of the

above trajectory produces a more uniform transient oscillatory behavior which

decays somewhat towards a mildly oscillatory spin condition (Figure 3.36 ).

This example points out that the role of thrust in spin entry studies must

receive more attention. By forcing V = 0 we are effectively maintaining

thrust at a level which exactly opposes aerodynamic drag. This becomes

physically unrealistic, however, in simulations where a and a undergo dramatic

variations, as happens here; this means that the thrust direction is fluctuating

wildly, as well as thrust magnitude.

The maneuver discussed with regards to Fig. 3.12 and 3.13 may also

be considered as a spin entry sequence. Fig. 3.37 shows a variation of

this maneuver in which the rudder takes the place of the aileron as the

lateral control during the maneuver. As previously mentioned, the rudder

plays a more critical role in converting post-stall motion into spin

entry and subsequent spin motion, and Fig. 3.37 shows that an oscillatory,

left pro-spin is induced by maintaining 6r at 100 while the elevator is

stepped from 00 to -140 in 2 second intervals, 20 at a time from t= 0. It

is not in this case necessary to step 6e in sequences to -140 to show this

effect, but we have done so here and in other instances to observe the

effect of intermediate control values. However, more care is needed in

general with large control changes, as unwanted jump phenomena may occur,

placing the motion in a different region than desired.

The following runs present variations on the run depicted in Fig. 3.36.

In these runs, the control sequencing for spin entry was made more realistic:

-.-.. r..-
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i 6e=-21' from t:0 sec; 6r changed from 00 to -250 at t=2 sec; and 6a

changed from 00 to 150 at t= 6 sec. In addition V was fixed at 443 fps for

Sall runs and the trajectory begins from trim conditions, as does the case
shown in Fig. 3.36. The run shown in Fig. 3.38 is exactly similar

I to the Figure 3.36 case, except for the difference in control sequencing

mentioned above. Comparison shows that the final, oscillatory state is

quite similar.

fFollowing the example of Bihrle (1976), the next runs show the effect

of changing the initial roll angle from a trim value to a number such as

600. Figure 3.39 shows that, again, the only significant diffeience is in

the transient region, which lasts about 20 seconds. If initial pitch angle

is changed to -50' in addition, Figure 3.40, the ensuing motion is sub-

stantially different. Yaw rate does not achieve the same value, and neither

does angle-of-attack. These results indicate that more study of the

effects of changing the initial state would be desirable. As an eventual

goal, methods for determining the domains of attraction of all stable

equilibria (points and limit cycles) should be developed.

3.4 Developed Spin Motion

It has been mentioned earlier that the task of effecting transition

from non-spin to stable, flat spin equilibrium requires passing through

a highly chaotic and oscillatory intermediate region of post-stall gy-

rations. It is consequently much easier to study spin behavior by

making time history runs whose initial conditions correspond to

I ~(SPINOSPIN)* If the trajectory begins at

I
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SPIN (p,q,r,c,,V,e,)

= (30,-4,100,73.5,-3,443,-16.6,-2.29)

and

= SPIN = (6a,6e,6r)= (15,-21,-25)

(all angular terms in degrees, V in fps), the ensuing spin motion is very

smooth, as indicated by Figure 3.41. This figure shows the horizontal

trace of the vehicle center of mass, and the altitude variation for the

initial conditions described above. These conditions are in the middle

of the stable spin equilibrium branch, Point A of Figure 3.42. At t = 15

seconds, 6r is changed to -290, so that a jump occurs to the upper limit

cycle branch, Point B. The only apparent result of this 6r change in Fig-

ure 3.41 is a slight tightening of the spiral, although yaw rate increases

more dramatically. Figure 3.43, which time-shifts the 6r change to -290 at

t= 0, does confirm the growth to a limit cycle condition.

From Figure 3.41 it can be observed that the equilibrium flat spin for

aircraft F generates a very tight spiral which slowly drifts to the right,

due to asymmetries in the aerodynamic data. Also, it can be seen that the

rate of descent is constant. Additionally, although it is not shown here,

the state variables remain constant for 6r=-250 , and exhibit well-damped

transient behavior to new steady state values when 6r is changed to -290.

Virtually all of the vehicle's velocity in this condition is vertical and

the aircraft's orientation with respect to the horizon is almost "flat"

(e = -16%0 = -30), with a very high yaw rate (about 100 degrees per second).

The following sections discuss these and similar results in more detail.

I

i ________ ____________________________
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3.4.1 Equilibrium Surfaces in the Developed Spin Region

I The typical spin equilibrium curve is seen in Figure 3.42. In this

I figure, 6r is varied while 6a = 150 and 6e = -2l° and V is fixed at 443 fps.

A very similar curve is shown in Figure 3.44 . Here, 6e = 00 but that is

the only difference from Figure 3.42 . Obviously, the elevator has little

effect on this particular type of spin motion. Both of these surfaces were

generated using the non-spin equilibrium set, neglecting gravity.

Choosing 6r=-25", the projection along 6a is shown for a in Figure 3.45.

Again, V=443, 6e=0' and the non-spin set (which neglects gravity) is

used. If 6e is changed to -21o, the a vs. 6a branch shown in Figure 3.46

results.

Finally, a composite of all of the relevant equilibrium points, for all

relevant control states, is projected onto the (r-) plane (Fig. 3.47). These

variables are the most significant ones in terms of analyzing spin motion.

Very noticeable is the "gap" between the non-spin and spin regions.

3.4.2 Importance of Assumptions Concerning Spin Equilibria; Comparisons

In this section the significance and validity of some of the assumptions

relevant to generating the spin region equilibrium surfaces is discussed.

This is done mainly by means of comparison of various effects.

Une result mentioned in the last section is that, once the aircraft

is in the stable flat spin condition, elevator controllability becomes

negligible. This is readily seen by comparing Figure 3.42, where

6e = -21*, with Figure 3.44 where 6e = 00. Figure 3.48 shows the

S [
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small effect of 6e in this spin equilibrium region. Only roll rate is

moderately affected as 6e takes values of 0', -ll° and -21'; and angle-

of-attack, surprisingly, is effectively unchanged. A possible explanation

is the large value of local sideslip at the elevator locations, generated

by the large steady yaw rate. Notice that V=600 in this figure.

Of somewhat more importance, however, is the validity of the assumptions

of fixing velocity and neglecting gravity effects in the spin region. If

this assumption can be accepted as valid for initial phases of analysis of

spin motion, then spin region equilibrium and bifurcation surfaces can be

generated by the simpler 5 DOF non-spin system of equations. Figure 3.49

shows that, at least for aircraft F in the flat spin region,

the simplifying assumption V = const, g = 0 may be used for initial spin

analyses. In fact, changing the velocity is seen to produce greater dif-

ferences than neglecting gravity. In this figure, 6a = 150 and 6e = -21';

also, the g f 0 branch, because it was run using the full spin system,

does not have associated with it a constant velocity. However, as

Figure 3.32 shows, the V range is only about 20 fps. Another surprising

result is the total insensitivity of angle-of-attack to these changes.

A conclusion to be drawn from this comparison is that, for flat

developed spin using the aircraft F model, since pitch angle is small

(about 150) and a 90, the term cos a sin e, which couples gravity into

the &-equation, is quite small. Furthermore, gravity does not directly

couple into the p and r equations, as does V (through dynamic pressure and

by influencing the aerodynamic coefficients).
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i Another observation of practical significance is that only one consis-

tent set of assumptions is needed in order to generate a truly global

3 equilibrium surface, examples of which are shown in Figs. 3.9, 3.50 and

3.51. One needs only to choose a "reasonable" value for V in order to

I generate these figures with the easier non-spin equations. Notice that

it is not possible--and we did make simulation runs to verify this--to

use the spin equations, with nonzero gravity, to produce equilibrium mani-

folds in non-spin regions; roll and pitch angles, which must be included

in this system, have no equilibrium values in most non-spin reqions.

I
!
I

I
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3.5 Spin Recovery and Prevention

In terms of the concepts employed by BACTM to analyze aircraft

behavior, it is possible to state the goal of spin recovery as follows:

spin recovery is achieved by control sequences which move the equilibrium

point from a stable spin region to either an unstable spin equilibrium

point or a point on a non-spin equilibrium branch, stable or unstable, from

which other control actions can produce trim conditions. A jump from one

stable equilibrium to another in the spin regime is undesirable.

With regard to prevention of spin situations, it will be seen that

the rudder is the most sensitive aerosurface control for aircraft F, in

terms of spin entry. The aileron also has considerable influence, but

with this particular model, rudder influence predominates. In view of

this, high-speed/large-attitude-change maneuvers which require large

elevator and aileron deflections (e.g., a rolling pull-up maneuver) be-

come very prone to spin-entry situations unless use of the rudder is

carefully controlled.

The next section deals with some of the aspects of spin recovery,

based on BACTM analysis using aircraft F, and the following section will

cover aspects of spin prevention.

3.5.1 Spin Recovery with Aircraft F

For aircraft F, a right pro-spin control setting of (6a,6e,6r)=(150,-21',-25°)

designated 6SPIN' represents the "spin control setting." This setting,

along with the proper values of the state variables, xSPIN' results in a

flat, equilibrium spin. See Point A in Fig. 3.42. The magnitude and sign

sense of the controls 6SPIN is very representative of similar spin settings
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of other aircraft; the elevator (Pe) is large and negative, to provide the

high a needed for stall and subsequent spin (although once in stable spin,

the aircraft F equilibrium state is quite insensitive to elevator control

actions--see Figure 3.48); the aileron (6a) is at its extreme setting,

of opposite sign to the rudder (6r); and the large negative rudder

generates the high positive yaw rate which signifies the development

of spin behavior following post-stall gyrations. The aileron is of

opposite sign in a spin setting because of the effect of adverse yaw

due to the aileron; that is, for a positive yaw rate (6r<O), a negative

roll rate (6a>0) induces a positive yaw moment, thereby enhancing the yaw

rate. In a coordinated turn, both 6a and 6r have the same sign, and yaw rate

(r)ispredominantly sensitive only to 6r. Proper sequencing of controls for

spin entry is important, because hysteresis effects are especially pro-

minent in these high - regions. For example, the elevator is a much more

effective control for spin entry when it is applied while sideslip (B) is

still small in magnitude. This is consistent with the usual circumstance

of spin following a stall; and the elevator typically induces stall be-

cause of its direct influence on angle-of-attack. See Fig. 3.10. Further-

more, elevator control effectiveness is practically nonexistent for high

values of B.

When a significant yaw rate is added to post-stall motions, and when

angle-of-attack (a) approaches values for which autorotation in yaw is

possible (i.e., C n 0), then entry into spin will most likely result. For

I
[_
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aircraft F, C n = O around a= 65
° . Spin may be considered a form of auto-

rotational yawing. This is a condition marked by a general ineffective-

ness of the lateral controls. However, by using the equilibrium surfaces,

recovery control sequences can be developed.

The standard method for spin recovery is to rapidly proceed to an anti-

spin setting--i.e., for our example, this would involve zeroing the elevator

and fixing 6r and 6a at their opposite extremes. This and similar techniques

based on aerosurface control actions alone are not always effective, and air-

craft are often equipped with special thrusters and drag parachutes for spin

recovery purposes. However, it is possible to effect recovery from spin with

the aircraft F model, and Fig. 3.9 indicates how this may be done.* This fig-

ure shows the equilibrium surfaces for 6a= 150, 6e= 00 , V= 600 and g= 0.

From the spin state, the elevator is returned to the neutral position;

this corresponds to point A in Fig. 3.9 . Then, the rudder is increased

from -25' to at least 150. This will induce two jumps, the first one to

a limit cycle around point B, and the second to a limit cycle around

point C on the lower branch. Then 6r may be decreased to 00 (point D),

as this last equilibrium branch passes through small values for a and r.

These control actions must be taken over a long enough period to allow the

transient motions to die out. Point D in Fig. 3.9 corresponds to point D in

Fig. 3.16, which is an equilibrium surface showing the final recovery sequence:

roll rate p is reduced by returning the aileron to its neutral setting. Note that it

involves a control effort (change in rudder from one extreme setting to the

other) which is used in practice for spin recovery. Again, the equilibrium

surfaces generated by BACTM tend to confirm previous results and past

*There are other possibilities which we shall try to investigate at a later

time, with more comprehensive models, such as the F-4.
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experience, while at the same time pointing out alternative possibilities

(which we expect to explore in more detail at a later time). A further

characterization of the limit cycle behavior is required for obtaininq op-

timal recovery procedures. This is because more information needed about

the limit cycle domains of attraction in the sensitive intermediate-a

region (250 !ci.650 ). Eventually, a complete calculation of the bifurca-

tion surfaces (both Hopf and elementary) should be done for spin recovery

control design.

Another possibility for a spin recovery strategy "leading with 5a" is

presented in Fig. 3.50. Here, 6a is reduced from 150 so that a jump occurs,

to a limit cycle condition around point B from point A (the latter point is

the same point A in Fig. 3.9). This jump will actually increase p, the roll

rate, but this is a desirable method of rolling the aircraft into the

airflow, which reduces a, as can be seen. The final step, then, is to

reduce 6r in magnitude to its neutral setting, and Fig. 3.15 shows that

4 this returns (r,a,p) to trim values. Similarly, time history runs confirm

this. As with Fig. 3.9, Fig. 3.50 represents equilibrium conditions

for 6e= 0', V=600 fps and g=0.

It should be recognized that excessive application of the "anti-spin"

control actions, in attempting to effect spin recovery, can lead to a

"reverse spin" situation if the controls are not moved towards neutral

quickly enough. A common method of spin recovery is to oscillate the

controls, particularly 6a and 6r, back and forth between their limits. The

frequency of the oscillations is usually determined by visual cues avail-

I
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V

spin reversal situation. At 42 seconds, the controls were changed from

right pro-spin (6a,6e,6r)= (150,-210,-300), to left pro-spin, (-150,-210,300).

It can be seen that, within 5 or 6 seconds, the yaw rate has changed

sign but not magnitude, and the basic spin condition remains otherwise

unaffected.

I
I

I

I
1~t
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3.6 Explanation of Spin Behavior of Aircraft F

As with other aircraft analyzed in the literature for spin behavior,

the main feature of aircraft F in developed spin is an extremely high

angle-of-attack and persistent, steady yaw rate. The presence of these-.
conditions simultaneously, without major fluctuation between high and low

values of r and a, indicates the spin condition. Once the aircraft has

been maneuvered into a stall condition, both the equilibrium surfaces and

the time history simulations indicate that wild, oscillatory post-stall

oscillations and gyrations result. The aircraft has entered a flight

regime lacking in stable equilibrium points; if the lateral controls have

been set to "pro-spin" positions just prior to or at the onset of stall,

then the yawing motion will predominate the post-stall dynamics. If inertia

coupling and aerodynamic forces and moments are then phased together so

that the values of angle-of-attack and sideslip generate negligible yaw-

moment coefficient, Cn, then the yawing motion will become autorotational.

For aircraft F, this will occur when a is about 700 and 6 is within ±100.

In a "pro-spin" control setting, the aileron is moved in the opposite

sense to the rudder, and both controls are typically at or close to their

extreme values. Thus if aileron is positive, for negative roll rate, but

the rudder is negative, the positive yaw rate generated by the rudder

will be enhanced by the adverse aileron yaw.

The transition dynamics from trim condition to spin equilibrium for

aircraft F involves limit cycle oscillations. A thorough analysis of the

generation and interplay of the aerodynamic, inertial and gravitational

,it
, I
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forces and moments is not merited for this model, since aerodynamic data were

developed in order to simulate full spin motion. However, it is felt that

post stall gyrations produced by the model are similar, in general,

to what is actually experienced in flight tests of military aircraft.

The model limitations and open-loop nature of the simulation make complete

transition from trim conditions, controls neutral, to stable, developed spin

a very difficult task. The equilibrium surfaces are useful starting points,

but in regions where stable branches are nonexistent, they cannot predict

easily the nature of the motion to be encountered in that region. Thus, an

exhaustive series of runs would be required in order to proceed completely

from trim to spin. However, we have been able to show that by making two runs,

one with initial conditions at (XSPINOSPiN) and the other at trim, that

respective control sequences may be chosen, using the information provided

by the equilibrium surfaces, so as to bring them to a common final state.

Fig. 3.52 shows a trajectory which began in a spin condition. At 0.5 seconds,

the rudder was changed from -25* to 250, and 6a changed from 150 initially to

7.50 (t = 20 seconds) and 00 at 30 seconds. The resulting oscillatory spin

matches very closely the final condition of the trajectory shown in Fig. 3.53,

which began in trim and had the following control sequence:

time 6a 6e 6r
(seconds) (degrees)

0 15 -11 0

2. 15 -11 1.5

8. 15 -11 7.0

30. 15 -11 11.3

40 15 -11 14.0

50 15 -11 11.3

60. 15 0. 25.

70. 0. 0. 25. 1
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This is an important result in that it does show that the model produces

motions that proceed from trim to spin and vice versa. As the equilibrium

surfaces show, there exist several attractors (both points and orbits) and

their associated domains of attraction which make it very difficult to

effect excursions in the state-control space. We have effectively com-

bined two runs which take advantage of more favorable equilibrium struc-

tures in their respective starting regions and brought them to a common

point. From this point, completely new control sequences must be used in

order to return to either starting point. The composite equilibrium sur-

faces shown in Fig. 3.9 and 3.50, for Se= 00, show that the jump form the

spin condition to highly oscillatory regions is much easier than going

in the reverse direction. Here, it can be seen that the jump is to a

limit cycle surface in the (6a,6r) plane. Once the jump occurs, elevator

controllability becomes more prominent, as can be seen by comparing Fig. 3.9

* with Fig. 3.54, which has 6e=-110 . The elevator change does not appre-

* ciably affect the shape of the spin equilibrium branch, but greatly changes

the non-spin branch.

The ease with which one can move from one point to the other along

the equilibrium surfaces is influenced greatly, as mentioned above, by the

structural stability properties of these surfaces in control space. An-

other related factor is the location of the attractors in this space and

the various "domains of attraction." Based on our results, it seems that

the domain of attraction for the stable segment of the spin equilibrium

branch is much smaller than neighboring domains of attraction of limit

cycles. This necessitates precision control sequencing, sensitively

attuned to the current state, in order to achieve stable spin.Is
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CHAPTER IV

Ot_her_ Topics

During this reporting period, further work has been performed to

understand the nature of the nonlinear high- dynamic behavior of air-

craft H (Mehra et al. (1977)). In this regard, there are two topics

I which merit discussion at this time. The first topic, exploring the power

spectra of some motions, is part of an overall study which will be ex-

Ipanded on in the future with the F-4 aircraft model. The second topic

1deals with using our knowledge of the global (nonlinear) characteristics

of the aricraft model of interest to synthesize a command/stability aug-

1mentation system.

* 4.1 Power Sp _tra- of Time Histories for A/C H

As a means of gaining further insight into the nature of the Hopf

Bifurcation and the limit cycle motions which subsequently arise, we have

studied certain time history responses of aircraft H in order to see

whether responses become multiperiodic and tend towards nonperiodicity

or chaos (Ruelle (1977)). It was shown previously (Mehra et al. (1977))

that most of the aircraft H time histories exhibit one of the following

two types of motions:

1) the state variables behave in a noticeably periodic manner, with

an amplitude growth/decay time constant which is much greater than

1 the interval of interest over which the motion is observed;

2) the motion decays to a steady-state equilibrium in which all of

[o

mI
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the state variables arrive at a unique value, without oscilla-

tions.

However, there are initial conditions and control settings which

produce a response that appears to be erratic and it is not possible

to conclusively determine whether or not the motion possesses limit cycle

behavior, based purely on an inspection of time histories. Ruelle (1977)

states that when a motion contains at least three basic frequencies, it is

possible for the periodic response to appear random in nature, due to cer-

tain nonlinear perturbations.

It is therefore worthwhile to look at the spectra of these responses.

Aircraft H has been used in this study, because it models adequately the

kind of nonlinear terms which generate periodic behavior. The spectra

used here are merely the Fourier transforms of the autocorrelation func-

tions of each of the state variables (p,q,r,a,a) computed from their time

histories. A routine from the IMSL library package was used to generate

the spectra.

The control values for which spectra of resulting time histories were

computed are shown in Fig. 4.1. These figures are taken from the report

by Mehra et al. (1977).

Fig. 4.2 shows a time history which is well-behaved. The small tran-

sient behavior at the beginning decays rapidly to steady state values for

each of the states. The controls for this case are held at 6a=0 0 , 6e= 20,

6r=50, and the initial conditions are x= s = p=q r =0. The corresponding

spectra are shown in Fig. 4.3. These are generated for a time interval from

2 to 100 seconds which includes the initial transient motions. Note that

I

... _ _ _ _ _|m m m m m 
m m m

Nm m m m '~
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there are 2 frequencies, a secondary one which has roughly twice the value

of the fundamental frequency, the latter being about 0.40 cycles per sec-

ond (cps). Note also that the secondary frequency appears only in the

spectra of the longitudinal variables, a and q. The control settings for

this case are in the linear region, so such decoupling is not a sur-

prise. Averaging effects have reduced the amplitude of the spectra (i.e.,

for most of the time period over which the spectra are computed, the system

is at equilibrium. The amplitude thus changes with the ratio of transient

time interval to total timer interval).

Fig. 4.4 shows the results of computing the spectra over the time period

22 to 85 sec. which effectively avoids all transient behavior. The mag-

nitudes have been reduced several orders of magnitude, and the secondary

frequency has vanished. Note, however, that the fundamental frequency

is still detectable, and it still has the same value (about 0.40 cps).

Limit cycle motions were next studied by repeating the above run,

except for 6a which is set at -180. Since the initial conditions

are again at the origin, a Hopf Bifurcation (i.e., jump) to a limit

cycle occurs for this value of 6a, as.seen in Fig. 4.5. The resulting

spectra, shown in Fig. 4.6, indicate that the fundamental frequency

is about 1.3 cps, with a secondary frequency at about 2.3 cps and

hints of a third frequency (see the p spectrum) at 1.05 cps. The major

difference from the 6a= 0' case, however, lies in the amplitudes of the

spikes, which are at least three orders of magnitude greater. The spikes

are sharper, indicating a "clean" oscillation (the spectrum of a

pure sinusoid is an impulse located at the frequency of the sinusoid; the
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spectrum of white noise is a constant over all frequencies and is propor-

tional to the power of the signal).

A run was next made with 1a -6', e= 2, r= 0", and initial conditions

p= -46.3, q = 23.4, r= 59.2 deg/sec, i =-2.39, - -31.5 °. The time history,

Fig. 4.7, indicates evidence of at least 2 frequencies. The corresponding

spectra, Fig. 4.8, show a dominant frequency at 1.2 cps, and three sub-

harmonics at about 0.15, 0.3 and 0.45 cps. As in all cases except Fig. 4.4,

the time interval for the spectrum computation in 2 to 100 sec. The some-

what irregular spacing of the high peaks in Fig. 4.7 gives rise to the

cluster of 3 secondary peaks in the spectra. The absence of rudder in

this case may explain the lack of secondary frequencies in the spectra for

and r, the two variables most directly dependent on ,sr.

Fig. 4.9 shows a more erratic motion, and its spectrum is in Fig. 4.10.

The initial values for the state variables are again zero, and 6a=0,

6e=2', and 6r is moved to 100. Again the roll motion (p) is dominant

with a primary frequency of 0.375 cps. The pitch rate (q) motion is less

periodic and has several frequencies. It is not clear, however, whether

any chaotic regimes exist for aircraft H. McLaughlin and Martin (1974,

19/b) show that in fluid flow, chaotic motions can result either via a

phenomenon known as an inverted Hopf bifurcation (i.e., existence of un-

stable limit cycles at control values below the control values for which

a pair of complex conjugate eigenvalues crosses the imaginary axis) or via

normal Hopf bifurcation exceeding three in number. (Ruelle (1977) has

shown, however, that chaotic motions or "strange attractors" are possible

even after three Hopf-type bifurcations.) Since the order of the aircraft H

model is five and at most two pairs of complex conjugate eigenvalues can
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cross the imaginary axis, "strange attractors" cannot be present if

only normal bifurcations are considered. At this time, it does not

seem that inverted bifurcations are present in the aircraft H model,

though this does require further study.

I-
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4.2 Command and Stability Augmentation

Progress of a significant nature in this area awaits the development

of the spin bifurcation algorithm, discussed in Sec. 2.1. Using the

current algorithm several computer runs are required in order to generate

adequately all of the branches of the bifurcation surfaces in the two-

dimensional control space. When the third control is varied, an entirely

new surface must be generated.

However, the results developed so far for two-dimensional command

augmentation systems using the aircraft H model of Mehra, Kessel and

Carroll (1977) have been very promising. The (two-dimensional) bifur-

cation surfaces are used to define relationships between the two control

variables which serve to expand as much as possible the region in the

equilibrium-state space for which bifurcations are avoided. Work has

been centered to date on the control pair (6a, 6r). Command augmentation

gains relating 6r to .a are generally called aileron-rudder interconnect

(ARI) systems. ARI gains cause the rudder to deflect in conjunction with

aileron movement. The purpose is to compensate in some manner for the

effect of changing flight conditions on control response of the aircraft.

The standard method of defining the ARI gains is to set them as linear

functions of angle-of-attack. By using BACTM, in particular the bifurcation

surface plots, it is possible to generate directly ARI, or any other type

of command augmentation, functions. This is a more general, or global,

procedure than those wich reduce to a gain linear in a. It does not

rely on localized analyses throughout the control-state space, but incor-

porates the global aircraft behavior information inherent in the BACTM results.

?1
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Work done to date has used aircraft H bifurcation surfaces. For

each value of 6e, a surface was generated, and a linear relation-

ship between rudder and aileron was derived.* The criterion was

to expand as much as possible the "non-catastrophic, non-limit-cycle"

region in the control space. Since each setting of 6e corresponds to an

equilibrium value of angle-of-attack, a, the BACTM ARI gains can similarly

be plotted versus cc. Fig. 4.11 shows this plot compared to the linear ARI

gains selected by Gilbert, Nguyen and VanGrunst (1976). The main point

to be made here is that the general sense of the two plots is similar.

(In Fig. 4.11, the values at the break points refer to the elevator deflec-

tion, in degrees). The gain values are of comparable magnitude, and a

"mean slope" for the BACTM points would not be very different. It is

felt that the BACT11 method would result in better overall performance

because of the global stability information inherent in it. Work will

be continued in this area with the F-4 model.

i
*BACTM does not require that this relationship be linear. Later results

may show better response for gains nonlinear in (6a,6r).I
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CHAPTER V

Conclusions and Recommendations for Further Research

5.1 Conclusions

Based on analysis using BACTM of the aircraft F model defined in

this report, we can conclude that

(i) BACTM has been succesfully expanded and modified so that it

now has the capability to perform analysis of aircraft in the

highly complex post-stall and spin regimes. This was achieved

by introducing more powerful continuation methods for solving

equilibrium and bifurcation surfaces, and by utilizing an

aircraft model with sufficient aerodynamic data to simulate

motions over extreme ranges of angle-of-attack and sideslip.

(ii) The aircraft F model was very useful for its role in the de-

velopment of the BACTM spin analysis program. Also, it was

useful for studying developed spin motion. However, the aero-

dynamic data as given cannot with uniform accuracy deal with

the wide variation in flight conditions which results from

maneuvers proceeding from trim to spin conditions. It is

necessary to begin using a more complete model, with the

aerodynamics divided into static, forced oscillation and

rotary balance data. In this way, combinations of the three

sets may be varied from one flight regime to another, to more

accurately simulate actual flight test results.

(iii) Spin study via BACTM can be made easier by assuming, on a

il



250

first-trial basis, that gravity effects are negligible.

This assumption must be applied with care, however, because

gravity plays an important role in post-stall dynamics as

well as most spin motions. Nonetheless, it appears to be

reasonable to apply this assumption to aircraft F studied here.

(iv) The transition between the non-spin and spin stable equilibria

for aircraft F is difficult to achieve due to the strongly attrac-

ting nature of the intermediate, high- equilibrium region. The

BACTM analysis shows a high degree of nonlinear, oscillatory, limit

cycle behavior associated with a large domain of attraction and a

large region of structural stability for the limit cycle family.

(v) Aircraft F in flat developed spin follows a tight vertical

helical path, which is characterized by constant speed,

sink rate, and a high, autorotational, steady yaw rate.

In this condition, the elevator is ineffective as a

control, and recovery is possible only by using the rudder

and aileron.

(vi) Entry into spin for aircraft F is strongly affected by assump-

tions about velocity. A spin of smaller amplitude oscillations

and higher angle-of-attack (i.e., a more flat, developed spin)

results when velocity is fixed, as opposed to when it is allowed

to vary. The fixed velocity case, for small a and a

angles, corresponds to a nonzero thrust situation, with the

thrust neutralizing drag effects. When velocity is allowed

to vary in this report, zero thrust is assumed.

11
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(vii) The stall departure region is preceded by a wing rock

type of limit cycle motion which is typical of modern

high performance aircraft.

5.2 Recommendations

Based on our experience during this reporting period, it is suggested

that the following areas be investigated in the future:

(i) The F-4 data should be analyzed using BACTM since it contains

more realistic aerodynamics, is well documented and well

supported by flight tests.

(ii) Computational development of BACTM should be continued, as

more accurate and efficient algorithms are needed, particu-

larly for the generation of a full set of bifurcation

surfaces.

(iii) More analysis should be made of the assumptions regarding

equilibrium motion in spin, particularly the assumption that

gravity can be neglected in certain cases.

(iv) More time history runs and analyses should be done with initial

conditions in selected regions of the state-control space;

the purpose being to more clearly define persistence of limit

cycle behavior and to establish boundaries for the domains of

attraction. Analytical and computational procedures need to

be developed for generating Hopf bifurcation surfaces.
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(v) Using aircraft F-4 data to generate bifurcation surfaces,

perform preliminary synthesis of a command augmentation

system using BACTM. This system should then be compared

to other systems in the literature.

(vi) Using the F-4 model, study the role of thrust in post-stall,

departure, spin entry and developed spin flight conditions.

(vii) Determine the parameter values under which structurally stable

limit cycles such as high-a oscillatory spins exist for a

given aircraft model and design dynamic control strategies

for recovery from such limit cycles.

*1
!I

4



APPENDIX A

Notation

b wing span

cmean aerodynamic chord

M
Cz= 2L rolling moment coefficient

M
Cm = S pitching moment coefficient

M
Cn Z b  yawing moment coefficient

Cx = qS longitudinal force coefficient

Cy =  Sside force coefficient

(F-mg)' ^

Cz = S normal force coefficient

E vehicle total kinetic energy

f force-moment terms in the aircraft

rfi
F Jacobian matrix of partial derivatives, I. iJ

F aerodynamic force

g (constant) acceleration due to gravity,
9.8067 m/sec2 (32.174 ft/sec2 )

algebraic system of terms for generating bifur-
cation surfaces (Chapter II)

G augmented Jacobian matrix of partial derivatives,

rji .,for bifurcation surfaces
gLf
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h altitude above earth's surface

I 1Ixz body axis momen~s and product of inertia, taken
about the center of mass

I moment of inertia tensor (Eq. 3.2.38)

Mx, MyMz rolling, pitching, yawing moments acting about body
axes

m aircraft mass

M special vector,Sec. 2.1.2

N(-) null space

p,q,r angular rates about body axes (roll, pitch, yaw,
respectively)

q dynamic pressure, 0 V
2

R radius of helical path of airplane

R(.) range space

Rn n-dimensional space of real numbers

unit vectors in cylindrical coordinates; zI is
vertical, directed toward center of earth-

S wing area

t time

t* time at which equilibrium solution is made

u,v,w body axis components of V

V airspeed, = IjI

VH horizontal component of velocity

V aircraft center of mass velocity, inertial with
respect to local horizontal

W aircraft weight
*1

x vector of state variables; e.g., for n= 5 equili-
brium system, x(p,q,r,t,B)

q.
,l l ... . i ...... .. i .. . :: ; .,.-- ,.- .'C.r. "-- ' i n'
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augmented vector of dependent variables, for
bifurcation surfaces; e.g., for n=5 equilibrium
system, ,= (x,6 ), where 6j e (6a,6e,6r)

aircraft body axis unit vectors (x positive through
nose, j positive through right wing, 2 positive
down)

C% angle of attack, or incidence angle (Chapter Il1);

also continuation variable (Chapter II)

B angle of sideslip

6 control parameter; either 6a, 6e, or 6r (Chapter II)

A determinant of F, the Jacobian matrix

6 control vector, (6a,6e,6r)

6a,6e,6r aileron, elevator, and rudder control deflections
(positive 6e is trailing edge down, positive 6a is
right trailing edge down, positive 6r is trailing
edge left)

p atmospheric density

Euler angles defining orientation of body axes
in the inertial reference axes (yaw, pitch, roll,
in that sequence)

W angular rate about center of mass, vpz+ qz+ rL

polar angle in cylindrical coordinate system defining
aircraft position

a e [-1,1] c such that -Is i

a e (-1,1) r such that -1<a<1

the combinations [.) and (-] are similar; i.e., ae[-1,1) means
-1<a< I

a e A a is an element of the set A

a A a is not an element of the set A

[a ij] a matrix array whose elements are designated by
ii aj, the element at row i, column j

i;Sir
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(ai) a vector array whose elements are designated by
a i , the i th location element

Iv indicates vector v is in inertial coordinates

)T matrix transpose

( )* i) complex conjugate, as in Eq. (2.1.41)
ii) equilibrium solution, as in Sec. 2.1.4.1

II x Ii the Euclidean norm of the vector x, i.e.,

[-n-7,-n2 n
PVYI xI-if xeR

det() the determinant of the argument (which must be a
square matrix)

() d( )/dt; also d( )/ds in Sec. 2.1.1

-A equal by definition

Stability Derivatives

aCi
C -- , for i= t,m,n,x,y,z

and = 6a,e,6r

A Ci
( b for = p,r,A

aci
c 2(v) for = q

In addition, the coefficients C. and the derivatives aCi/a{ ,n,i} are

functions of a and 8, and are usually determined via tabular or graphical

look-up.

IA
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